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Although analysis of variance (ANOVA) is widely used by
ecologists, the full potential of ANOVA as a descriptive tool has
not been realized in most ecological studies. As questions ad-
dressed by ecologists become more complex, and experimental
and sampling designs more complicated, it is necessary for
ecologists to estimate both statistical significance and fit when
comparing the relative importance of individual factors in an
explanatory model, especially when models are multi-factorial.
Yet, with few exceptions, ecologists are only presenting signifi-
cance values with ANOVA results. Here we review methods for
estimating statistical fit (magnitude of effect) for individual
ANOVA factors based on variance components and provide
examples of their application to field data. Furthermore, we
detail the potential occurrence of negative variance components
when determining magnitude of effects in ANOVA and describe
simple remediation procedures. The techniques we advocate are
efficient and will greatly enhance analyses of a wide variety of
ANOVA models used in ecological studies. Estimation of magni-
tude of effects will particularly benefit the analysis of complex
multi-factorial ANOVAs where emphasis is on interpreting the
relative importance of many individual factors.

In contemporary ecology, realization of the inherent
complexity of interactions among organisms and their
environment typically leads to the design of compli-
cated studies. Experimental ecologists often favor elab-
orate multi-factorial designs that simultaneously
investigate the main effects of many factors as well as
their subsequent higher-order interactions (Underwood
1997). Recent studies have also shown that sampling
and/or experimentation carried out at numerous hierar-
chical scales of space and time can greatly enhance
understanding of spatio-temporal variability in ecologi-
cal processes (Connell et al. 1997, Karlson and Cornell
1998, Hughes et al. 1999). Fortunately, quantitative
analysis of such multi-factorial data sets has been facil-
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itated by a rich and well established statistical litera-
ture, with general linear modeling techniques (e.g.
multiple regression and multi-factorial analysis of vari-
ance or ANOVA) finding considerable use in a variety
of situations. The primary benefit of these analyses is
that they can estimate the combined importance of all
factors of interest, as well as compare the relative
importance of individual factors and their interactions.

When multi-factorial analyses are conducted primar-
ily for the purpose of comparing the relative impor-
tance of individual factors, sufficient conclusions often
can be made from simple graphical plots of means and
variances. As such, graphical analysis of multi-factorial
data should always precede the use of inferential statis-
tics. When patterns of multi-factorial data become con-
fused, or when ecologists are reluctant to rely solely on
graphical analyses, statistical significance and fit of
individual factors can be determined relatively easily
(Winer et al. 1991, Neter et al. 1996). The significance
of a factor describes how likely (estimates the probabil-
ity that) the patterns explained by the factor are simply
due to random chance and thus serve no functional
importance to the researcher. Significance is inherently
dependent on the amount of data collected (sample
size) and is typically presented in the form of probabil-
ity-values (P values). Conversely, determination of fit is
not probabilistic, but rather is an estimate of the vari-
ance in a response variable that can be explained by the
factor. A factor’s fit is thus a measure of the magnitude
of that factor’s effect on the response variable. Esti-
mates of factor fit are usually termed ‘coefficients of
determination’ (r?) in regression analyses and ‘magni-
tude of effects’ (®?) in ANOVA (Winer et al. 1991,
Neter et al. 1996). Unlike statistical significance, a
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factor’s fit is not directly dependent on sample size, and
significance and fit do not necessarily co-vary. Conse-
quently, the most significant factors in a multi-factorial
analysis are not guaranteed to also have the greatest fit.
Estimates of significance and fit can therefore be used
to describe different aspects of statistical results.

Although ecologists have typically been diligent
about reporting both factor significance and fit for
regression analyses, they have with few exceptions ap-
parently settled for describing ANOVA results by fac-
tor significance alone. When using ANOVA to interpret
results of ecological experiments, most ecologists have
simply presented P values as evidence of, or lack
thereof, the biological importance of some factor (e.g.
competition or predation) on a response variable (e.g.
growth or survivorship). We reviewed all issues of
Australian Journal of Ecology, Ecology, Journal of
Ecology, and Oikos published in 1998 and found that
factor fit was estimated in only 2 of 184 (1.1%) papers
that used ANOVA. By ignoring factor fit, researchers
fail to utilize the full descriptive power of ANOVA,
potentially leading to an incorrect interpretation of a
factor’s ‘true’ biological importance. Factors that are
highly significant, yet explain little variability in the
response variable (low magnitude of effects), can result
when sample sizes are simply large enough to detect
statistically weak effects. Without determining magni-
tude of effects, greater emphasis might be placed on the
importance of such factors than is warranted. Further-
more, it may be impossible to compare the relative
importance of individual factors or interactions in a
multi-factorial ANOVA when more than one factor is
found to be significant but magnitude of effects are not
presented. That is, researchers may be unable to distin-
guish the effects of weak factors from strong ones.
Given the potential presence of multiple significant
factors of varied strength in ecological ANOVAs, and
in ecology in general (Paine 1992, Berlow 1999), the
description and interpretation of ecological data will be
enhanced by the determination of both a factor’s sig-
nificance and its fit.

We suspect that the primary reason ecologists fail to
report magnitude of effects for individual factors in
ANOVA is due to a lack of familiarity with the statisti-
cal methodology for making such determinations. Such
unfamiliarity is understandable given that many bio-
statistical texts (e.g. Sokal and Rohlf 1981, Zar 1996)
provide only brief (if any) descriptions of magnitude of
effects, although a modest statistical literature on the
subject does exist (e.g. Vaughn and Corballis 1969,
Dodd and Schultz 1973, Winer et al. 1991, Searle et al.
1992, Neter et al. 1996, Underwood 1997). Here, we
review the logic and methods for determining magni-
tude of effects for individual factors in ANOVA. Our
emphasis is primarily with multi-factorial ANOVAs, as
these models will likely see the greatest benefit due to
estimation of magnitude of effects. We further demon-
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strate the utility of these methods by (1) applying them
to real data for a variety of ANOVA models commonly
used by ecologists and (2) providing published exam-
ples of how the interpretation of ecological ANOVA is
enhanced by the estimation of magnitude of effects.
Our goal is to give the reader an overview of the
methods and advantages of estimating the magnitude of
effects, so that these estimates might be better inte-
grated into the presentation of ANOVA results in
ecological studies.

Determining magnitude of effects in ANOVA

We recognize two methods for estimating the relative
importance of individual factors in ANOVA. The first,
recommended by Weldon and Slauson (1986), estimates
the ‘percentage contribution’ of a particular factor to
the total sums of squares of a response variable. Al-
though simple, this method is sensitive to differences in
sample size and design (Underwood and Petraitis 1993)
and does not attempt to isolate the ‘true’ effect of a
factor from that of sampling variability (i.e. it ignores
the composition of expected mean squares; see below).
The second method estimates the relative magnitude of
effects for individual factors in ANOVA by decompos-
ing each factor’s mean square into its variance compo-
nents. This method has been well described in the
statistical literature (Vaughn and Corballis 1969, Dodd
and Schultz 1973, Winer et al. 1991, Searle et al. 1992,
Neter et al. 1996) and in some texts that emphasize the
use of ANOVA in ecological studies (Underwood
1997). This method is more robust to variable sample
sizes and sampling designs than that of Weldon and
Slauson (1986) and will likely be of greater use to
ecologists. Therefore, we favor this method for estimat-
ing the relative importance of individual factors in
ANOVA and devote the remainder of this paper to it.

The basic logic for determining the magnitude of
effects (w?) for a factor in an ANOVA is simple:
estimate the variance in a response variable that can be
explained by the factor (its variance component) and
relate this to the total variance (or error variance; Price
and Joyner 1997) in the response variable (Vaughn and
Corballis 1969, Dodd and Schultz 1973, Winer et al.
1991). Although the logic may be simple, application of
the technique is complicated by the necessary step of
calculating variance components for each factor in the
ANOVA. Mean squares calculated for individual fac-
tors do not represent variance attributed solely to one
factor, but are composites of variance components (or
‘variance-like’ estimates, sensu Underwood 1997) de-
pendent on the particular design of the ANOVA model
(Vaughn and Corballis 1969, Dodd and Schultz 1973,
Winer et al. 1991, Searle et al. 1992, Neter et al. 1996,
Underwood 1997). These composites are termed the
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expected mean squares (E{MS}) and are particular to
each factor. Expected mean squares for most ANOVA
models can be found in the statistical literature (see
above references) or can be determined directly by the
researcher (Searle et al. 1992, Underwood 1997). Exam-
ples of calculated and expected mean squares for one-
way, two-way (fixed, random, and mixed), and nested
ANOVAs are given in Table 1, although we caution
that the interpretation of expected mean squares will
vary depending on whether they represent fixed or
random variables (sce Problems with magnitude of
effects estimates). The formulae for expected mean
squares should be familiar as they are used to specify
the correct F ratios for determination of factor signifi-

cance in ANOVA. Clearly, the complexity of expected
mean squares is determined by the complexity of the
ANOVA model, and the identification of proper ex-
pected mean squares for a given model is not an
insignificant task. The reader should refer to Winer et
al. (1991) and Underwood (1997) for a more complete
discussion on the determination of expected mean
squares, especially for ANOVA models more compli-
cated than those presented in Table 1.

Once expected mean squares have been determined
for each factor in the ANOVA, a factor’s variance
component (c?) can be isolated from the expected mean
squares by substitution and simple algebra. Variance
components can be estimated for each factor and the

Table 1. Sums of squares, degrees of freedom, mean squares, expected mean squares (E{MS}), variance components, and
magnitude of effects (w?, presented as percentages) for a variety of ANOVA models. Factor A was fixed for the two-way mixed
model and random for the nested model. Data are the same for the two one-way ANOVAs and three two-way ANOVAs to
allow comparisons of magnitude of effects among different models. £ o? equals the sums-of-squared deviations among factor
levels, where factor A has levels j=1 to J and factor B has levels k=1 to K; n is the sample size within each level. Note that
fixed effect variances (e.g. ¢4 =X cxf/(] —1)) are converted to population variances (X ocj?/J) when calculating variance compo-
nents (Vaughn and Corballis 1969, Winer et al. 1991). n =3 for all models; J= 11 for one-way models, 3 for two-way models,
and 2 for the nested model; K = 5 for two-way models, and 2 for nested model. Data for one- and two-way models are from
Graham (1999) and data for the nested model are from Edwards (unpubl.).

Model Source SS DF MS E{MS} Variance component o?
ong;(vggy Factor A 38.65 10 3.87 o2+n(ZoF/(J—1)) o2 = (MSA— MSE) y J—1 109 %0.1
n
error 586 22 027 o2 62=0.27 19.9
Wi 2 2 MSA— MSE
onrea;vggm Factor A 38.65 10 387 o;+noy o2 :( ): 1.20 816
n
error 586 22 027 o 62=0.27 18.4
W 2 2] — MSA—-MSE) J—1
tng\évgy Factor A 2201 2 1100 ol+nK(Z o /(J—1)) o :( P )>< 047 152
n
2 2K — MSB—MSE) K-1
Factor B 67.89 4 1697 o2+nJ(Zo}/(K—1)) 3 :( ; )X - 148 479
142
2 2 (J— MSAB— MSE) (J—1}K—-1
AxB 3836 8  4.80 ?Kt’f;% L2 /(1) G%m:( - )X( ;(K )=0.79 956
error 1052 30 035 o 62=0.35 11.3
two-way  Factor A 2201 2 1100 o2+nc?z+nKc? , (MSA—MSAB) 0.41 11.4
random 4= nkK R :
Factor B 67.89 4 1697 c2+noiz+nloy G%:(MSB“;WSAB) 135 376
n
2 MSAB— MSE
AxB 3836 8 480 o,+noky 0i3=( ) _ 148 412
n
error 10.52 30 035 o2 62=0.35 9.8
two-way  Factor A 2201 2 11.00 o2+no’, , (MSA—MSAB) J—1
mixed ci=——"—x——=0.28 7.1
+nK(Z «2/(J 1) nk J
2 2 MSB— MSE
Factor B 6789 4 1697 ol+nich G%Z( ) _ 185 467
n
2 2 MSAB—MSE
AxB 3836 8 480 o2+noiy GE,B=( ) _ 148 374
n
error 1052 30 035 o2 62=10.35 8.8
nested Factor A 285 1 285 ol+ncy,+nKoy o = (MSA VA;SE{A D_ 0.47 193
n
] o o MSA{A} — MSE
Factor B{A} 0.11 2 0.05 o;+ncyuy 200 :( {4} ): 007 108
n
error 198 8 025 ¢ 62=10.25 38.5
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mean square error (c2) for most ANOVA designs
(Table 1). The estimation of variance components is an
important step in ecological ANOVA because variance
components are the best estimate of the contribution of
a given factor to variability in a response variable. As
such, variance components alone can be valuable de-
scriptors of ANOVA results. If it is assumed that the
total variability observed in a response variable is the
sum of the variance components for all factors included
in the model plus the mean square error (Vaughn and
Corballis 1969, Dodd and Schultz 1973, Winer et al.
1991; but see concerns of Underwood 1997), then the
relative (%) contribution of each variance component
to the response variable (®?) can be estimated by divid-
ing each variance component by this total (Table 1).
Furthermore, the sum of w? for all factors included in
the model represents the variance in the response vari-
able that can be explained by the overall model. Thus,
once the correct expected mean squares for an ANOVA
model have been specified, calculation of the variance
components and magnitude of effects for each factor
(and the error) is relatively straightforward.

Problems with magnitude of effects estimates

Estimating the magnitude of effects in ANOVA is not
without its problems. As previously stated, variance
component estimates depend strongly on the correct
identification of expected mean squares for the particu-
lar ANOVA model being analyzed, and these expected
mean squares may not be particularly intuitive when
ANOVA models incorporate both fixed and random
factors. The problem with ANOVA models that incor-
porate both fixed and random factors revolves around
the correct identification of the expected mean squares
(see Table 1), as well as the appropriate interpretation
of their meaning. The use of fixed versus random
factors in ecological studies has been well-addressed
(e.g. Potvin 1993, Bennington and Thayne 1994, New-
man et al. 1997, Underwood 1997), and we therefore
limit our discussion to the analytical and conceptual
problems that pertain to estimating variance compo-
nents and determining magnitude of effects.

Problems arise because of the inherent differences in
underlying hypotheses relating to fixed and random
factors. Fixed factors are those in which the factor
levels examined in the analysis represent all levels of
interest; the levels are imposed by the researcher and
are generally of particular inferential importance. In
contrast, random factors are those in which the factor
levels examined represent only a random subset of a
larger (infinite) population of factor levels; the levels are
chosen simply to obtain an accurate estimate of the
within-factor variance so that inferences can be drawn
about the entire population from which levels were
sampled. Although not always straightforward, espe-
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cially in cases where factor levels represent differences
in space or time, the correct identification of factors as
being either fixed or random is essential to calculating
magnitude of effects (see Table 1). The main problem is
that random factors, through their interaction with
other factors in the ANOVA model, are assumed to
alter the expected mean squares of those factors. Since
these interactions are estimated from only a subset of
the random factor’s levels examined in the analysis,
their variance contributions are not precisely known,
thereby enhancing the uncertainty (variance) of the
associated factors in the ANOVA model. In contrast,
interactions with fixed factors are determined from all
levels of those factors, as these are the sole levels under
statistical and inferential investigation. The variance
contributions of these interactions are therefore pre-
cisely known and have little effect on the uncertainty of
other factors in the ANOVA model. These analytical
differences between fixed and random factors become
apparent when comparing the calculation of expected
mean squares for two-way fixed, random, and mixed
ANOVA models (Table 1).

Once individual factors are identified as either fixed
or random, the calculation of their variance compo-
nents is relatively straightforward (see Table 1). How-
ever, problems may arise if ANOVA models include
two or more random factors. In this case, the precise
calculation of some variance components may not be
possible, much as the precise calculation of some F-
statistics are not possible (Underwood 1997). Further-
more, for ANOVA models that include only fixed
factors, the choice of factor levels with similar effects
on a response variable will result in smaller variance
component estimates (and hence smaller magnitude of
effects) than for factor levels with very different effects
on the response variable. These problems can become
further complicated when ANOVA models incorporate
blocking factors, repeated-measures factors, or various
degrees of nesting (Vaughn and Corballis 1969, Dodd
and Schultz 1973, Winer et al. 1991, Underwood 1997).
Conceptual and inferential difficulties can also arise if
the researcher wants to compare magnitude of effects
between fixed and random factors (Underwood 1997). It
is therefore vital that researchers carefully consider the
identity and justification of factor levels before assign-
ing them to experimental units.

The importance of correctly determining expected
mean squares when estimating magnitude of effects
cannot be overstated. The methodology described here
(and in the references herein) requires that all factors in
the ANOVA model be orthogonal to each other, a
condition generally met in ANOVA (Winer et al. 1991,
Searle et al. 1992, Neter et al. 1996). However, the
determination of variance components is most easily
done in completely balanced designs (where sample
sizes are equal), because unbalanced ANOVA models
can deviate from the assumption of orthogonal factors
(Winer et al. 1991). Furthermore, Underwood (1997)
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stated that magnitude of effects estimated for individual
factors using the above methodology are all determined
relative to the contributions of other factors in the
model and sampling error, and he questioned the rele-
vance of such estimates. Comparisons of magnitude of
effects among different experiments, and thus different
ANOVAs, may be unreasonable since each analysis
would have its own relative baseline (i.e. total variabil-
ity in a response variable may vary among experi-
ments). As Underwood (1997) acknowledged, such
circumstances would limit comparisons of magnitude of
effects to within a given experiment and it is important
that the reader recognizes this constraint when calculat-
ing and discussing magnitude of effects. In other words,
if total variability is found to vary among different
ANOVAs, then the importance of a given factor can
only be determined relative to its baseline, and can
therefore only be compared to other variables that use
that same baseline. In such cases, variance component
estimates are more appropriate than magnitude of ef-
fects because they are not estimated relative to a base-
line. If, however, it can be shown that total variability
is similar for different experiments, among-experiment
comparisons of magnitude of effects may be reason-
able. Comparison of within- and among-experiment
differences in the contribution individual ANOVA fac-
tors may therefore be best done by presenting both
absolute (variance components) and relative (magni-
tude of effects) estimates.

A final problem with determining magnitude of ef-
fects for individual factors in ANOVA is that negative
variance components can be obtained from rearranging
a factor’s expected mean square (e.g. the nested
ANOVA example in Table 1). This is because variance
component estimates are just as vulnerable to imprecise
measurement as other statistical parameters; negative
variance components are analogous to F ratios < 1.
Yet, negative variance components clearly violate the
concept of variance. Although negative variance com-
ponents can occur in any ANOVA model, we have
found them to occur most often in nested designs
(discussed below; Graham 1999, M. S. Edwards un-
publ.). Winer et al. (1991) and Searle et al. (1992) both
discuss the occurrence and potential remediation of
negative variance components in ANOVA, and a few
papers in the primary statistical literature specifically
address this problem (Thompson 1962, Thompson and
Moore 1963). Because ecologists will likely encounter
negative variance components at one time or another,
we treat this problem in greater detail below.

Negative variance component estimates

We begin by summarizing previous recommendations
for working with negative variance component esti-

OIKOS 93:3 (2001)

mates. Limitation of magnitude of effects estimates to
only significant factors may be a good first step in
avoiding negative variance components, since such esti-
mates will most likely occur with non-significant factors
(Kingsford and Battershill 1998); confidence intervals
can be determined for variance components to help
identify significant factors (Burdick and Graybill 1992).
Researchers might also interpret negative estimates as a
sign of insufficient data, collect more data, and hope
the problem simply goes away (Searle et al. 1992). A
more reasonable alternative, however, would be to
question whether the ANOVA model and associated
expected mean squares were correct in the first place.
We recommend that the appropriateness of an
ANOVA model be rechecked whenever negative esti-
mates are encountered. If the problem is not corrected,
more complicated statistical procedures can be used
that result only in positive variance component esti-
mates. For example, maximum likelihood (Searle et al.
1992) and restricted maximum likelihood (Rank et al.
1998) procedures may be appropriate for this purpose.
For those researchers looking for a less complicated
solution, a negative estimate can be interpreted as an
indication that the true variance of the factor is equal
to zero, in which case the negative estimate can be left
as is (Searle et al. 1992). Retaining a negative estimate,
however, can result in the unreasonable situation that a
single magnitude of effects exceeds the sum of all
factors (i.e. ®> > 100%). Alternatively, one could again
accept the true variance estimate as zero and replace
the negative estimate with zero (Searle et al. 1992).
Such action, however, will bias the calculation of subse-
quent variance components. A final method is to accept
the true variance component estimate as zero, replace
the negative estimate with zero, and ignore this factor
during the calculation of other variance components in
the model. Thompson and Moore (1963) described a
simple algorithm for conducting such a remediation
procedure, termed the “pool-the-minimum-violator” al-
gorithm. Although it only works under certain circum-
stances, this algorithm should prove to be a useful
technique in most situations where ecologists are likely
to encounter negative variance component estimates.
The first step of the “pool-the-minimum-violator”
technique is to determine if the ANOVA model can be
described by a rooted tree. A rooted tree is a linear
ordering of points (e.g. expected mean squares) such
that all points above the base of the tree (the root) have
a unique path to the root (Fig. 1). The linear order of
the points is dependent on the inclusion of expected
mean squares of lower points (predecessors) within
those of higher points, as determined by the form of the
ANOVA model. Here a predecessor represents sam-
pling variability for the point directly above it, and
therefore the root of the tree will be the expected mean
square error. As can be seen in Fig. 1, many ANOVA
models can be described by rooted trees (one-way,
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A*B A*C B*C

Factor A
Factor A Factor A Factor B Factor B
error error error
A B. C
Factor A
Factor A Factor B Factor A Factor B
A*B A*B Factor C
error error
E. F. G.

two-way, and simple blocked and nested designs)
whereas others (orthogonal > two-way designs) can
not. If the ANOVA model in question can not be
described by a rooted tree, then the “pool-the-mini-
mum-violator” algorithm cannot be used and the re-
searcher must resort to one of the other remediation
procedures described above; limitation of magnitude of
effects estimates to only significant factors will likely be
the most useful option. If a tree is found to be rooted,
the next step is to determine whether a minimum
violator is present. A minimum violator is a point
whose mean square is lower than that of its predecessor
(Table 2, step 1). If a minimum violator is present then
the sums of squares and degrees of freedom of the
violator are combined with that of its predecessor and
a pooled mean square is determined (Table 2, step 2). A
new rooted tree is then created and additional mini-
mum violators identified. The procedure continues until
violators are no longer present in the tree. In a final
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Fig. 1. Schematic diagrams
of trees for expected mean
squares of various ANOVA
models. Error mean squares
serve as the root of each tree.
Expected mean squares high
on the tree include variance
components for all factors
(predecessors) that are lower
but on the same path. A.
one-way; B. two-way with
main effect (Factor A) and a
blocking variable (Factor B);
C. two-way with Factor B
nested within Factor A; D.
orthogonal two-way (fixed
model) with main effects

D (Factors A and B) and an

’ interaction (A x B); E.
orthogonal two-way (random
model) with main effects
(Factors A and B) and an
interaction (A x B); F.
three-way with main effects
(Factors A and B),
interactions (A x B), and a
blocking variable (Factor C);
and G. orthogonal three-way
(random model) with main
effects (Factors A, B and C),
two-way interactions (A x B,
AxC,BxC), and a
three-way interaction (A x B x
C). Expected mean squares for
trees A, C, D and E are the
same as in Table 1. A rooted
tree is one in which there is a
single unique path from each
factor to the root. As such, all
models except G are rooted.
Orthogonal > two-way models
will only be rooted when they
are fixed models. Diagrams
adapted from Thompson and
Moore (1963).

FactorA A *B FactorB

error

Factor B Factor C

A*B*C

€rror

step, the pooled mean square is equated to each of the
factors that comprise it, and variance components and
magnitude of effects are determined based on these
pooled estimates (Table 2, step 2). Such a procedure
will result in unbiased variance component estimates
for a wide variety of ANOVA models (Thompson and
Moore 1963).

Use of magnitude of effects in ecology

Given the frequent need for ecologists to isolate weak
effects from strong ones in ANOVA, it is worthwhile to
estimate the magnitude of effects for individual factors
in addition to the significance of these factors (Weldon
and Slauson 1986, Underwood and Petraitis 1993). This
is especially true when ANOVA models become com-
plicated by interacting factors, because the relative con-
tribution of the individual factors (main effects) to the
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response variable may not otherwise be clear. For
example, individual factors in a multi-factorial
ANOVA may be highly significant and the interactions
among these factors may also be highly significant; 96
of 129 multi-factorial ANOVAs published in Australian
Journal of Ecology, Ecology, Journal of Ecology, and
Oikos published in 1998 detected significant higher-or-
der interactions. In such cases, the effects of the individ-
ual factors are not additive and proper analyses should
only proceed by investigating the interaction terms in
further detail. Underwood (1981, 1997) gave excellent
discussions of the meaning of main effects in the pres-
ence of interactions. Yet, when factors are not additive,
P values alone provide little information to the re-
searcher as to the relative importance of the main
effects vs that of their interactions. Such relative com-
parisons will clearly be of benefit during data analysis
and interpretation. For instance, most of the variance
in a response variable might be explained by the inter-
action term, and thus a researcher who stresses the
importance of main effects would clearly be drawing
inappropriate conclusions. In contrast, a significant in-
teraction term that has only weak effects on a response
variable might suggest that, although not statistically
additive, it is the main effects that are of greater relative
importance to the response variable.

We have found that estimating magnitude of effects
is particularly informative when done in association
with nested analyses, especially those that compare
variability among various spatial or temporal scales
(Graham 1999, M. S. Edwards unpubl.). In such de-
signs, geographic areas or temporal periods can be
partitioned into increasingly smaller units (scales). Each
scale is nested within (and subsequently the level of

replication for) the next larger scale (Underwood 1997).
A fully nested n-factor ANOVA (n =number of scales)
can then be used to determine at which spatial or
temporal scale(s) variation in the response variable is
significant, while estimating magnitude of effects can be
used to compare relative variability among the scales.
However, as discussed earlier, there is an increased
likelihood of obtaining negative estimates of magnitude
of effects in such models. These can occur when re-
sponse variables are strongly regulated by variability at
small spatial or temporal scales, and where variation at
larger scales is reduced due to averaging of small-scale
variability (Wiens 1989). In such cases, variability at the
larger scales will be inherently less than at smaller
scales, and the subsequent rearrangement and isolation
of expected mean squares may result in negative vari-
ance components estimates for some of the larger scales
(see Table 1). The “pool-the-minimum-violator” tech-
nique is a useful remedy when such cases occur (Gra-
ham 1999, M. S. Edwards unpubl.).

We have come across a dozen or so ecological studies
that have successfully used variance components and
magnitude of effects to determine either the relative
importance of individual factors and higher-order inter-
actions (Forrester 1994, Levin et al. 1997, Price and
Joyner 1997, Coomes and Grubb 1998, Rank et al.
1998, Casselle 1999, Lotze et al. 1999, Menge et al.
1999) or the spatio-temporal scales at which response
variables are both significant and ‘most variable’ (Caf-
fey 1985, Lively et al. 1993, Connell et al. 1997, Dun-
stan and Johnson 1998, Graham 1999, Hughes et al.
1999). Of these, a compelling example of the benefits of
estimating factor fit comes from Dunstan and John-
son’s (1998) study of spatio-temporal variability in

Table 2. Demonstration of the “pool-the-minimum-violator” technique for remediating negative variance components during
determination of magnitude of effects in ANOVA. Data, model, and symbols were the same as in the nested example in Table
1. The model formed a rooted tree (Fig. 1C) with Factor B having a negative variance component and an unreasonable
magnitude of effects estimate (Step 1). Factor B’s mean square was lower than that of its predecessor (the error mean square),
identifying Factor B as the minimum violator in this model (Step 1). Sums of squares and degrees of freedom for the minimum
violator and its predecessor were combined resulting in the calculation of a pooled mean square for the two sources (Step 2).
Variance components were then recalculated for each source based on the pooled mean square, subsequently setting the variance
component for Factor B to zero (Step 2); no minimum violators remained in the model. Magnitude of effects were then
determined by dividing the new variance components for each factor by the sum of all variance components for the model (i.e.
0.65). In this example, Factor A explained 67.7% of variance in the response variable, Factor B explained 0%, and sampling

error accounted for 32.3%.

Source SS DF MS Variance component o’
MSA—MSB{4
Step | Factor A 2.85 1 2.85 631:( ! 4D _ 047 73
n
. MSB{A}— MSE
Factor B{A} 0.11 2 0.05 ay _! {4} ) _ 007 —l0s8
n
error 1.98 8 0.25 62=0.25 38.5
: MSA—MSB{A
Step 2 Factor A 2.85 1 2.85 & =( K {4}) — 044 67.7
n
Factor B{A} 2.09 10 0.21 5 (MSB{A} —MSE)
Oy = =0 0
error 2.09 10 0.21 c?=0.21 32.3
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Table 3. ANOVA results from Dunstan and Johnson’s (1998)
study of spatio-temporal variability in coral recruitment. All
data are as presented in Dunstan and Johnson (1998). Origi-
nal sources Zone, Sites {Zone}, Racks {Sites}, and error have
been renamed km, 100s m, 10s m, and m, respectively. Paren-
theses indicate rankings of significance (P) and magnitude of
effects (w?) values within each experiment (A-D).

Source DF F P 0?

A. Pocilloporid recruitment after 5 months

Year 3,12 3.58 0.0469 (5) 6.3 (3)
km 2,4 17.05 00110 4) 26.1 (1)
100s m 4, 12 5.35 0.0104 (3) 3.5(5)
10s m 12,274 098 0.4680 (7) 1.3.(7)
Year x km 6, 12 1.18 0.3785 (6) 2.4 (6)
Yearx 100s m 12, 36 3.68 0.0012 (1) 18.6(2)
Yearx 10s m 36, 274 1.71 0.0091 (2) 3.7 (4)
m (error) 274 38.1

B. Pocilloporid recruitment after 12 months
Year 2,12 9.76 0.0030 (2) 17.6 (2)
km 2,4 528 0.0755 () 193 (1)
100s m 4,24 8.78 0.0002 (1) 6.3 (4)
10s m 24, 255 1.24  0.2106 (5) 0
Year x km 6, 12 0.60 0.7287 (7) 1.6 (5)
Yearx 100s m 12, 24 2.81 0.0150 (3) 8.9 (3)
Yearx 10s m 24, 255 1.15  0.2862 (6) 0.7 (6)
m (error) 255 45.6

C. Acroporid recruitment after 3 months
Year 3,12 1.54 0.2547 (4) 0 (5
km 2,4 1.83  0.2723 (5) 0 (6)
100s m 4,12 495 0.0137 (2) 1.0 (3)
10s m 12,274 097 0.4819 (6) 0.1 (4)
Year x km 6, 12 3.37 0.0349 (3) 21.3 (1)
Yearx 100s m 12, 36 454 0.0002 (1) 164 (2
Yearx10s m 36, 274 095 0.5547 (7) 0
m (error) 274 61.2

D. Acroporid recruitment after 10 months
Year 2, 12 11.77 0.0015 (1) 8.4 (2)
km 2,4 3.37 0.1385 (3) 0 (6)
100s m 4, 24 1.48 0.2395 (4) 1.9 (3)
10s m 24,255  0.87 0.6398 (7) 0
Year x km 6, 12 299 0.0501 (2) 10.5 (1)
Yearx 100s m 12, 24 1.34  0.2620 (5) 0.8 (5)
Yearx 10s m 24, 255  0.94 0.5486 (6) 1.6 (4)
m (error) 255 76.8

coral recruitment on the Great Barrier Reef. They were
interested in discriminating the effects of inter-annual
variability in recruitment from that occurring at four
nested spatial scales (meters, 10s meters, 100s meters,
kilometers). Sampling was replicated in each of four
years resulting in an ANOVA model that included both
nested factors and higher-order interactions (Table 3).
In addition to significance, Dunstan and Johnson
(1998) estimated magnitude of effects for all main
effects and interactions and demonstrated two impor-
tant benefits of estimating factor fit. First, Dunstan and
Johnson (1998) were able to quantify differences be-
tween smallest- and larger-scale spatial variability by
estimating the percent of variance explained by the
error term (Table 3); information describing the contri-
bution of error terms to the response variable (i.e.
within-group variability) is rarely presented in ecologi-
cal ANOVA. They subsequently found that 30-50% of

512

the variability in recruitment of pocilloporids and 60—
80% of acroporids occurred at the scale of meters.
Second, the results of Dunstan and Johnson (1998)
clearly indicated that important patterns in ecological
data can remain hidden if described by significance
values alone. In each of four ANOVAs, the most
significant main effect or interaction term did not have
the greatest fit (Table 3), and in one case (Table 3B) the
most significant term (100s m) explained less than 1/3
of the variance explained by an insignificant term (km).
Furthermore, some interactions were highly significant
and had high magnitude of effects (e.g. Year x 100s m;
Table 3A, C), whereas other interactions were either
highly significant and had low magnitude of effects
(Year x 10s m; Table 3A) or weakly significant and had
high magnitude of effects (Year x km; Table 3C, D).
Consequently, although the most insignificant terms did
have the lowest magnitude of effects, analysis of signifi-
cance values alone would have generated misleading
patterns of the relative importance of individual
factors.

Ecologists rarely include estimates of factor fit in the
description of ANOVA results, despite the widespread
use of multi-factorial ANOVA in ecology. Yet, the
logic and methodology presented here for determining
magnitude of effects is quite intuitive and can be ap-
plied to almost any ANOVA model for which expected
mean squares can be determined for the individual
factors. We have shown that estimates of factor fit can
greatly enhance the analysis and interpretation of eco-
logical ANOVAs, and we hope that ecologists will use
the techniques described herein with the goal that they
become incorporated into the conventional routine for
analyzing ecological data with ANOVA.
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