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Abstract

Background
and aims

Brown algae are critical components of marine ecosystems around the world. However, the
genome of only one species of the class has so far been sequenced. This contrasts with
numerous sequences available for model organisms such as higher plants, flies or worms.
The present communication expands our coverage of DNA content information to 98
species of brown algae with a view to facilitating further genomic investigations of the class.

Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and the red blood cell
(chicken erythrocyte) standard were used to estimate 2C values by static microspectro-
photometry.

Principal results 2C DNA contents are reported for 98 species of brown algae, almost doubling the number of
estimates available for the class. The present results also expand the reported DNA content
range to 0.2–3.6 pg, with several species of Fucales and Laminariales containing apparent
polyploid genomes with 2C ¼ 1.8–3.6 pg.

Conclusions The data provide DNA content values for 12 of the 19 recognized orders of brown algae
spanning the breadth of the class. Despite earlier contentions concerning DNA content and
the presence of oogamy, the present results do not support a correlation between phyloge-
netic placement and genome size. The closest sister groups to the brown algae have
genome sizes on the order of 0.3 pg (e.g. Schizocladiophyceae), suggesting that this may
be the ancestral genome size. However, DNA content ranges widely across the class.

Introduction

During the Second Plant Genome Size Workshop and
Discussion Meeting [Royal Botanic Gardens (RBG), Kew,
8–12 September 2003], major gaps (systematic, regional

and plant type) in our knowledge of plant DNA amounts
were identified (Bennett and Leitch 2005). Significantly,
it was noted that no database was available for the
algae. This shortcoming was soon addressed with a
compilation of genome size estimates for 247 species
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of red, green and brown macroscopic algae (Kapraun
2005). At a subsequent workshop entitled ‘Genome
size: a research discipline in development’, held in con-
junction with the XVII International Botanical Congress
(July 2005), green algae, especially streptophytes, were
identified as critical in efforts to reconstruct a hypotheti-
cal ancestral nuclear genome for the green algal ances-
tor basal to land plants (Leitch et al. 1998; Delwiche et al.
2002; Pryer et al. 2002; Greilhuber et al. 2006). We
immediately initiated an investigation that expanded
coverage for lineages of green algae by 72–157, and
this resulted in the characterization of the ancestral
land plant flagellate genome (Kapraun 2007). These
data (Kapraun 2005, 2007) are now incorporated into a
database of plant genome sizes (Kapraun et al. 2004;
Bennett and Leitch 2005; Gregory et al. 2007) compiled
and hosted by the RBG Kew web page (http://data.kew.
org/cvalues/).

The present communication concerns our recent
efforts to expand our coverage of DNA contents in
brown algae which are being increasingly nominated
as candidates for genomic investigations (e.g. Peters
et al. 2004; Waaland et al. 2004; Phillips et al. 2008a).
Recently, criteria for genomics investigations of several
macro-algal candidates have been proposed (Peters
et al. 2004; Waaland et al. 2004). Low DNA content
(genomes �100 Mb) has been a major criterion in the
selection of algae for genomic and genetic analyses
(Peters et al. 2004; Waaland et al. 2004), including
when employing bacterial artificial chromosomes
cloning technology as used for large-scale physical
mapping and genomic sequencing (Wang et al. 2005).
To date, macro-algal (multicellular) species nominated
as candidates have genomes in the range of 127–
300 Mb (Waaland et al. 2004). Remarkably, these nomi-
nations have been made on the basis of data limited
to about a dozen species and isolates (Peters et al.
2004; Waaland et al. 2004).

DNA C-value remains a key character in biology, biodi-
versity and molecular investigations as genome size has
many important and practical implications (Cavalier-
Smith 1985; Bennett et al. 2000; Leitch and Leitch
2008). For example, genome size directly influences the
cost and difficulty of sequencing projects, and is there-
fore a primary consideration in choosing future sequen-
cing subjects (Gregory 2005a, b; Gregory et al. 2007) as
species with large DNA amounts or genome sizes
make such genome projects prohibitively expensive
(Fay et al. 2005).

The present study increases, by an order of magnitude,
the number of brown algal taxa for which DNA content
data are available. In addition, it expands the list of
target brown algal species with appropriately small

genome sizes, and identifies taxa that have genome
sizes too large for most projects even though they may
meet many other criteria for genomics investigations
(Waaland et al. 2004). However, as sequencing costs
decrease with new technologies (e.g. 454 or Illumina),
even these projects may become feasible.

The availability of a DNA C-values database and a
consensus higher-level phylogenetic tree for green
algae has opened the way for determining evolutionary
trends in DNA amounts for the chlorophytes and strep-
tophytes (Kapraun 2005, 2007; López-Bautista et al.
2006). Unfortunately, in brown algae, a well-resolved
higher-level phylogeny remains elusive despite recent
advances (e.g. Phillips et al. 2008b; Silberfeld et al.
2010). In the last decade, DNA sequence data,
especially from studies utilizing ribosomal DNA (rDNA)
such as the 28S (LSU) or rbcL, have shown that
classic brown algal phylogenies based on a sequence
of simple/primitive to complex/advanced were more
apparent than real (e.g. Rousseau and De Reviers
1999; Draisma et al. 2001; Phillips et al. 2008b).
However, earlier studies were characterized by poor res-
olution in the branching order among the many groups,
especially basal and crown group lineages. This was
probably due to the low resolving power of the genes
employed, use of an insufficient amount of data and/
or the rapidity of the radiation event for the class
(Draisma et al. 2001; Rousseau et al. 2001).

A comprehensive phylogeny of the Phaeophyta
(Phillips et al. 2008b), developed from two-gene (rbcL
and LSU rDNA) sequence analyses, resolves several
monophyletic early lineages: (i) Choristocarpus (Disco-
sporangiales), a distant sister to the remaining brown
algal taxa as proposed earlier (Burrowes et al. 2003;
Draisma et al. 2003; Cho et al. 2004), (ii) Ishige
(Ishigeales) as proposed previously (Cho et al. 2004),
(iii) Heribaudiella/Bodanella (McCauley and Wehr 2007)
and (iv) Desmarestiales at the base of the crown group
(BACR) (Phillips et al. 2008b). The remaining brown algae
can be delineated into two groups: (i) an early diverging
set of basal lineages including the Syringodermatales,
Sphacelariales, Dictyotales, Onslowiales, Phaeostrophio-
naceae/Bodanella clade and (ii) the BACR of remaining
orders (Phillips et al. 2008b). This work was recently
taken a step further by the multigene efforts of Silberfeld
et al. (2010) which confirmed the early insights into evol-
utionary patterns and increased resolution in the BACR.
Yet in spite of this progress, many relationships along
the backbone of the brown algal tree remain unresolved.
However, with at least this preliminary pattern of brown
algal evolution in place, it is now possible to suggest
correlations between nuclear DNA content variation
and evolution among the brown algae.
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The present paper expands coverage for species and
isolates of brown algae from 54 to 98, almost doubling
published data (Kapraun 2005). Of this total, 16 resulted
from our ongoing research and from recent investi-
gations of members of the Dictyotales and Fucales
from the coasts of Spain (Gómez Garreta et al. 2010,
2011).

Materials and methods

Source of specimens

Collection data and/or source of cultures are summar-
ized at http://people.uncw.edu/kapraund/DNA/ (see
links to Table 2 Phaeophyta).

Laminariales data were obtained from gametophytes
in the culture collection of R. Lewis or from collections in
nature made by N. Phillips along the Sonoma coast of
northern California. Additional specimens originated
from the Provasoli-Guillard National Center for Culture
of Marine Phytoplankton (CCMP), the Kobe University
Macro-Algal Culture Collection (KU-MACC) and the
culture collection of N. Phillips.

On the coast of Spain, 16 taxa of Fucales (Fucaceae
and Sargassaceae) and seven taxa of Dictyotales were
collected from the Mediterranean [Calella and Cadaqués
(Girona)] and Atlantic [A Coruña (Galicia), Ondarreta
and Zumaya (Guipúzcoa)] (see links to Table 1 at http://
gargoyle.arcadia.edu/biology/phillips2010.htm).

Assignment of ploidy level

Assignment of estimated nuclear DNA contents to specific
C-values in the present study is presumptive in that no
karyological investigations were conducted on the algal
samples used for nuclear DNA content estimates.

Nuclear DNA content estimates

Algal material was fixed in Carnoy’s solution (Kapraun
2005) and in Methacarn (methanol–Carnoy) to avoid
reported staining inhibition associated with intracellular
phenolic compounds (Puchtler et al. 1970a, b). Samples
were stored in 70 % ethanol at 4 8C; selected specimens
were rehydrated in water and softened in 5 % w/v EDTA
(Goff and Coleman 1990) for 12–48 h. Algal specimens
were transferred to cover slips treated with subbing
solution, and then air dried and stained with DAPI
(0.5 mg/mL 4′,6-diamidino-2-phenylindole) (Sigma
Chemical Co., St Louis, MO, USA) as previously described
in detail (Goff and Coleman 1990; Kapraun and Nguyen
1994). Nuclear DNA contents were based on estimates
from both microspectrophotometry and image analysis.

Microspectrophotometry with DAPI followed pro-
cedures published previously (Kapraun and Nguyen
1994; Kapraun et al. 2007) using a protocol modified

after Goff and Coleman (1990). Nuclear DNA content
estimates based on image analysis of DAPI-stained
specimens followed a procedure modified from
Kapraun and Dunwoody (2002) and Choi et al. (1994),
using a Cooled CCD Miramax RTE 782-Y high-
performance digital camera placed on a Leica DMRB
fluorescence microscope and analysed with MetaMorph
software (Molecular Devices, Toronto, Canada) (Gómez
Garreta et al. 2010, 2011). For a recent, comprehensive
review of theory and practice of DNA quantification by
densitometry, see Hardie et al. (2002) or Greilhuber
(2008).

Nuclear DNA contents of algal specimens were esti-
mated by comparing their If values with those of
chicken erythrocytes (red blood cells; RBC); (Kapraun
1994, Kapraun and Dunwoody 2002). See Appendix IA,
Section (f) of Additional information, ‘Standard Species’,
for the rationale in accepting 2C DNA ¼ 2.4 pg as the
standard. DAPI binds by a non-intercalative mechanism
to adenine- and thymine-rich regions of DNA that
contain at least four A–T base pairs (Portugal and
Waring 1988). Consequently, chicken erythrocytes (RBC)
can be used directly as standards for determining
amounts of DNA only when the A–Tcontents of both stan-
dard and experimental DNA are equivalent (Coleman
et al. 1981). Chicken has a nuclear DNA base composition
of 42–43 mol% G + C (Marmur and Doty 1962). Limited
published data for the Phaeophyta indicate values in the
range of 38–43 mol% G + C (Stam et al. 1988; Le Gall
et al., 1993). Members of the Phaeophyta investigated in
this study are assumed to have a similar range of base
pair compositions, and the linearity is accepted between
DAPI–DNA binding in both RBC and algal samples (Le
Gall et al. 1993).

The Second Plant Genome Size workshop and Discus-
sion Meeting (Bennett et al. 2000; Bennett and Leitch
2005) identified ‘best practice’ methodology for nuclear
genome size estimation in plant tissues. Virtually none
of the published genome size data for algae resulted
from investigations adhering to all of the best practice
recommendations, primarily because measurement of
the relatively small algal nuclear genomes (Kapraun
2005, 2007) requires standard species different from
those specified as appropriate for vascular plants
(Doležel et al. 1998). Consequently, all present and pre-
viously published data should be considered accurate
only to +0.1 pg (Kapraun 2005).

Previously unpublished nuclear DNA content data in
Appendix IB of Additional information are indicated by
(8). Supplementary materials and methods, information
for collection locations, and data for number of algal
nuclei examined in each sample and estimates of
nuclear genome size (picograms) + SD are available at
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http://www.uncw.edu/people/kapraun/DNA or http://
gargoyle.arcadia.edu/biology/phillips2010.htm (see
Table 2 Phaeophyta, Appendix IB Phaeophyta of
Additional information). Nuclear DNA content data for
these and other brown algae are incorporated into
a database of plant genome sizes (Kapraun 2005;
Gregory et al. 2007) hosted by the RBG Kew web page
(http://data.kew.org/cvalues/).

Results and discussion

Range of DNA contents

Comparison of If values for species of phaeophytes with
chicken erythrocytes (RBCs) permitted estimation of
nuclear DNA contents for 98 species of brown algae,
almost doubling the number of estimates available for
the class. Previously, a DNA content range of 2C ¼ 0.2–
1.8 pg was reported (Kapraun 2005). The present
results, which expand the reported DNA content range
upward to 3.6 pg, approximate one order of magnitude
(Appendix I of Additional information). The smallest
mean 2C genome sizes were found in the Ectocarpales
(0.2–1.0 pg) and the Phaeostrophionaceae/Bodanella
complex (0.2–0.6 pg) while the largest 2C genome
sizes were found in the Fucales (0.4–3.6 pg), Laminar-
iales (0.6–3.2 pg), Dictyotales (0.7–1.8 pg) and Disco-
sporangiales (2.3 pg). Larger genome sizes (≥2.0 pg)
reported in the Fucales and Laminariales almost cer-
tainly represent polyploid values (Kapraun 2005). By
comparison, these estimates for phaeophytes closely
approximate previously published DNA content esti-
mates for both the Chlorophyta (2C ¼ 0.2–6.1 pg)
(Kapraun 2005, 2007) and the Rhodophyta (2C ¼ 0.2–
2.8 pg) (Kapraun 2005; Kapraun et al. 2007).

The size of the larger phaeophyte genomes is best
appreciated when compared with the minimum
amount of DNA estimated for specifying the mRNA
sequences required for angiosperm development.
Specifically, the genomes of Genlisea margaretae Hutch-
inson and Arabidopsis thaliana (L.) Heynhold, with 2C ¼
126 and 314 Mb, respectively (Riechmann et al. 2000;
Bennett et al. 2003; Greilhuber et al. 2006), are among
the smallest found in angiosperms (Bennett and Smith
1976), with A. thaliana having 1.5–2× the estimated
15 000 genes per haploid genome required for develop-
ment (Flavell 1980). Even the smallest phaeophyte
genomes reported (e.g. 1C ¼ 98 Mb in Hinksia irregularis,
Punctaria tennuissima and Stilophora rhizodes), with
their probable genomic redundancy (Kapraun 2005,
2007), have the genic capacity for morphologically
complex development.

Candidates for genomic studies

The results of the present study reveal many macro-algal
(multicellular) species of brown algae with genome sizes
comparable to those of species previously nominated or
used as candidates for genomic studies (i.e. 127–
300 Mbp) (Waaland et al. 2004; Phillips et al. 2008a).
For example, some isolates of Laminaria saccharina
(Garbary and Clarke 2002) (Laminariales) and several
species of Sargassaceae (Gómez Garreta et al. 2010)
have small (1C ¼ 196–319 Mb) genomes (Appendix IB
of Additional information), are amenable to culture
and are of significant ecological and/or commercial
importance. Previously, attention was called to the
need to redirect basic algal research toward economi-
cally important species (Kapraun 1999).

Polyploidy

Polyploidy has been reported widely in the Phaeophyta
(Kapraun 2005), especially in the Laminariales (Lewis
et al. 1993; Lewis 1996; Garbary and Clarke 2002), Ecto-
carpales (Müller 1967, 1970), Fucales (Yabu and Yasui
1983; Lewis 1996; Coyer et al. 2006; Gómez Garreta
et al. 2010) and Dictyotales (Gómez Garreta et al.
2011). For a recent review of concepts associated with
adaptations and genetic variability associated with
hybridization and polyploidy in brown algae, see Coyer
et al. (2006). The present results support previous sug-
gestions that polyploidy is a pervasive feature of brown
algal genomics. The extent of both species-level and
intraplant ploidy level variation (including endopoly-
ploidy) remains to be determined, but represents an
exciting area for future research (Coyer et al. 2006).

Correlation between DNA content and phylogenetic
placement

Although no correlation is apparent between phylogen-
etic placement (Fig. 1) and genome size, in both the
Fucales and Dictyotales, DNA contents may be diagnos-
tic, representing synapomorphies. Most members of the
Fucaceae are characterized by discrete ranges of 2C
nuclear genome size values of 1.1–2.2 pg, while most
members of the Sargassaceae are characterized by dis-
crete values of 0.4–0.8 pg (Gómez Garreta et al. 2010).
Members of the Dictyotales are characterized by discrete
ranges of 2C nuclear genome sizes: species of Dictyota
have a range of 0.6–0.8 pg while other genera have a
range of 1.0–1.7 pg (Gómez Garreta et al. 2011).

Previously, it was suggested that orders characterized
by oogamy (Dictyotales and Fucales) or a pronounced
anisogamy (Sphacelariales) and having large female
gametes (eggs) have the largest nuclear genomes
observed regardless of their phylogenetic position. The
present results make this generalization less clear as
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the large genome (2C ¼ 2.3 pg) in Choristocarpus tenel-
lus (Discosporangiales) is comparable to those reported
in the oogamous Dictyotales and Fucales (Fig. 1).

Characterization of an ancestral brown algal
genome

In the present study, Schizocladia ischiensis is the closest
sister group to the brown algae and has a small genome
(2C ¼ 0.3 pg). Unfortunately, neither chromosome
numbers nor karyotype data are available for this
species or any of the basal phaeophytes (Phillips et al.
2008b). Most orders of brown algae are reported to
have basic chromosome numbers between 8 and 13
(Cole 1967; Lewis 1996). A basic chromosome number
of 4 has been reported for the Dictyotales, since
haploid chromosome numbers of 12 and 16 are
common (Hörnig et al. 1992). If the small genome size

of Schizocladia is found to be complemented by a
small chromosome number (e.g. n ¼ 4), then it would
be an appropriate candidate for investigations of an
extant closely related sister group to the brown algae
and possibly provide a window into the transition to
multicellularity seen in the brown algae.

Conclusions and forward look
These data provide DNA content values for 12 of the 19
recognized orders of brown algae spanning the breadth
of the class. The present results do not support a corre-
lation between phylogenetic placement and genome
size in the brown algae. The closest sister groups to
the brown algae have genome sizes on the order of
0.3 pg (e.g. Schizocladiophyceae), suggesting that this
may be the ancestral genome size of the class.

Fig. 1 Estimated 2C nuclear DNA content ranges superimposed on a compiled phylogenetic tree for the Phaeophyta redrawn from
Draisma et al. (2001), Rousseau et al. (2001), Cho et al. 2004, Phillips et al. 2008b) and Silberfeld et al. (2010). All resolved branch
points on the tree were supported by ≥85–100 % bootstrap or Bayesian values, whereas polytomies are unsupported areas of the
tree (,70 % support) in most studies. The 2C values for the Phaeothamniophyceae and Xanthophyceae are part of an ongoing inves-
tigation of nuclear genome sizes across Heterokonts (D.F. Kapraun and N. Phillips, unpubl. res.). ALL in the Laminariales stands for
the derived families (Alariaceae, Laminariaceae, Lessoniaceae and Costariaceae) in the order.
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A number of phaeophytes warrant further study,
including several of the basal lineages with small
genome sizes and interesting evolutionary histories
like the Phaeostrophionaceae or Dictyotales, and the
ecologically and economically important Fucales and
Laminariales (Fig. 1) for which published DNA content
data are surprisingly limited or absent. The Fucales
include seven families with many ecologically important
genera with interesting biogeographic patterns. For
instance, Fucus, Ascophyllum and Pelvetia are restricted
to the North Atlantic while Hormosira and Xiphophora
are restricted to the southern hemisphere. Recently,
the number of nuclear DNA content estimates for
species of Fucus, Ascophyllum and Pelvetia has more
than doubled (Gómez Garreta et al. 2010). However, no
C-value data for any southern hemisphere Fucales have
been published.

The Laminariales as recently redefined includes 22
genera and four families (Lane et al. 2006). In temperate
regions, many of these genera form expansive kelp
forests representing some of the most productive
marine ecosystems. Additionally, many of the Laminar-
iales are commercially important, forming the basis of
the alginic acid food additive industry (e.g. Andersen
1992). In terms of genome sizes, the kelps have some
of the largest genomes reported in the phaeophytes
(Appendix IB of Additional information and Fig. 1).
Further study is warranted to explore the nature of the
large genome sizes, to aid in hybridization experiments
and in efforts to domesticate target species for
mariculture.

Additional information
The following Additional information is available in the
online version of this article –

File 1: Appendix IA includes notes on chromosome
numbers and nuclear DNA content estimates in isolates
and species of brown algae.

File 2: Appendix IB (Table 1) includes the number of
algal nuclei examined in each sample and nuclear
genome size estimates (picograms)+SD (see links to
Table 1 on http://www.uncw.edu/people/kapraun/DNA
or http://gargoyle.arcadia.edu/biology/phillips2010.htm).

File 3: Appendix IC includes numbered references for
chromosome complements and DNA values in the
Phaeophyta cited in Appendix I.
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