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ABSTRACT

For clonal red seaweeds, the genet is defined as the thallus that develops from a single spore. The demography of
genets for these organisms is poorly known. This results from the inability of visually detecting genets when ramets
{fronds) are abundant, when separate thalli actually represent fragments of one original genet, and when holdfast
coalescence occurs between neighboring genets. The use of genetic markers, such as allozymes and certain DNA
regions, has allowed for the identification of genets in natural populations of clonal terrestrial plants. However, this
may not work for natural populations of clonal red seaweeds, because several genets may be produced by asexual
spores from the same individual, rendering those genets unidentifiable with certain genetic markers. A useful
approach could be to study experimental populations under controlled laboratory conditions. The position and shape
of genets could be monitored as they develop from genetically distinct spores, selected as such on purpose. Once the
visual identification of genets becomes impossible due to the increasing density of ramets, mapping the different ramet
genotypes should allow for the continuous identification of genets. Some genetic variation could arise within genets
through somatic mutation and genetic transposition. Rates of these processes are largely unknown for clonal
seaweeds, so they should be first estimated to determine their potential effects on demographic studies based on
genetic markers.
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RESUMEN

Para algas rojas clonales, defino el genet como el talo que se desarrolla a partir de una espora. La demografia de
genets de estos organismos estd muy poco estudiada. Esto se debe a nuestra incapacidad para diferenciar genets
vistalmente cuando la densidad de ramets {frondas} es alta, cuando vemos talos distintos gue, en realidad, son
fragmentos de un mismo genet original y cuando algunos genets vecinos se fusionan. El mapeo del genotipo de
ramets, usandy marcadores genéticos como aloenzimas y ADN, ha permitido identificar a los genets de plantas
clonales terrestres en poblaciones naturales. Sin embargo, esto no serviria para poblaciones naturales de algas rojas
clonales, pues varios genets pueden derivar de un mismo individuo original mediante esporas asexuales, lo gue
determina que esos genets hijos sean genéticamente iguales para ciertos marcadores. La demografia de genets de
algas rojas clonales podria estudiarse mejor en poblaciones experimentales de laboratorio. Por ejemplo, se podrian
seleccionar esporas genéticamente distintas y monitorear la posicién de los gensts resultantes mientras crecen.
Cuando su idenitificacion visual se tornase imposible, al aumentar la densidad de ramets, el mapso del genotipe de los
ramets deberie permitir identificar la posicién de los genets vy, por lo tanto, estudiar su demografia. Algin grado de
variacién genética podria ocurrir en algunos gensts por mutacidn somética o por transposicién genética. La
frecuencia de estos fenémenos es generalmente desconocida para algas rojas, por lo que deberia primeramente
estimarse para determinar su posible efecto en estudios demograficos basados en marcadores genéticos.

Palabras clave: clonal, demografia; Gelidiales; genet; Gigartinales; Gracilariales; marcadores genéticos; ramet;
Rhodophyta.




INTRODUCTION

Clonal plants are those that vegetatively produce similar
functional units {e.g., shoots} that are potentially able to live
on their own if physically separated from the parent plant.
Such vegetative units are termed ramets, whersas the entire
plant is termed genet {Harper and White, 1974). The demo-
graphy of genats of clonal plants is less understood than tho-
se of nonclonal plants. Genets of clonal plants are difficult,
and frequently impossible, to identify in the field, mainly be-
cause of their frequent fragmentation and of the difficulty in
determining the association of ramets with their parent genet
when they are produced by rhizomes or by intermingled sto-
lons. These limitations seem to explain why research on plant
demography has been principally done with nonclonal plants
{Eriksson, 1993). Additionally, these problems apparently re-
sulted in demographic studies on clonal plants being mostly
done at the ramet level {de Kroon, 1993; Hara, 1994; Petersan
and Jones, 1997; Suzuki and Hutchings, 1997).

Although limiting a demagraphic study to the ramet level
may seem enough to understand the population dynamics of
clonal plants, there is essential information that results only
from genet demagraphy. The ecological and evolutionary dy-
namics of clonal plants depend on the interactions between
their hierarchical levels of organization (Eriksson and Jerling,
1990; Vuorisalo et a/., 1997). For example, demagraphic rates of
ramets may depend on the position of ramets within a genet,
on their distance to a neighboring genst, on the dynamics of a
disease within a genet, or on genet age or size. Genet identifi-
cation is also important in making inferences about the evolu-
tion of foraging and reprocuctive strategies of clonal plants,
especially when selection pressures act mainly on genets.

Seaweeds are important components of several coastal
marine ecosystems. Many species are nonclonal, such as so-
me kelps and fucoids {Phagophyceae - hrown algae -}, and
their individuals are usually easy to identify. Their basic den-
sity-dependent patterns are similar to those for nonclonal te-
rrestrial plants {Black, 1974; Chapman and Goudey, 1983;
Dean ef af., 1989; Reed, 1990; Ang and DeWreede, 1992; Creed,
1985, Flores-Moya et al,, 1997; Creed et al,, 1998; Arenas and
Fernandez, 2000), with some special circumstances, such as
the recruitment of intertidal fucoids {Ang and DeWreede,
1992). There are also several clonal seaweeds, which may be
found among the Rhodophyta ({red algas), the Chiorophyta
{green algae), and the Phaeophyceae. This paper will focus
on clonal red seaweeds, many of which are dominant in their
communities and have aconomic value as well.

The genet of clonal red seaweeds is interpreted here as
the entire thallus that develops from a single spore, whether
a carpaspore or & tetraspore. The word “genet” was origi-
nally used for clonal terrestrial plants to refer to the genetic
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individual that develops from a seed and that produces a
number of ramets {Harper and White, 1974; Kays and Harper,
1974). Recent definitions of the genet refer specifically to the
zygote as its initial cell {de Kroon and van Groenendael, 1997).
The term “genetic individual” has been coined to mean that
all of the parts of the genet are genetically identical. Howe-
ver, somatic mutations can occur during the growth of the ge-
net (Klekowski, 1997), so such interpretation should be
abandoned. On the other hand, considering the zygote as the
only initial cell of the genet is perhaps too limiting. The main
purpose of having a definition of genet is to make the distinc-
tion hetween individuals that develop from a single reproduc-
tive cell and individuals that result from the vegetative
fragmentation {clonal fragments, sensu Eriksson and Jerling,
1990} of a single original individual. Thus, the genet may be
hetter defined as the free-living individual that develops from
one zygote, parthenogenstic gamete, or spare and that pro-
duces ramets during growth. In this way, the definition of ge-
net can be applied appropriately to the equivalent structure
found in clonal seaweeds, bryophytes, and vascular plants.
For more details on this discussion, see Scrosati (2002).

In many species of clonal red seaweeds, the genet is
composed of a crustose (e.g., Gigartinales) or stoloniferous
(e.g., Gelidiales) holdfast and of several fronds that vary
greatly in form across species. Fronds can be considered as
ramets, because of their capacity for independent life when
separated from the parent thallus, provided that they remain
attached to the substrate. Such separation could result from
rock disfedgment, partial bleaching and subsequent death of
certain regions of a genet, or partial herbivory on a genet.
Despite the ecclogical and economic importance of these
seaweeds, their genets have rarely heen the subject of demo-
graphic studies, exceptions including those on the genus
Mazzaella, in the Gigartinales (May, 1986; Dyck and DeWree-
de, 1995; Scrosati, 1998). As is the case for clonal terrestrial
plants, for these seaweeds more is known about ramet demo-
graphy, although for only a few species. There are important
similarities with many clonal terrestrial plants, such as the
general fack of self-thinning among growing ramets of seaso-
nal herbs {Suzuki and Hutchings, 1997), which was observed
for the seaweeds Gelidium sesquipedale (Clemente) Bornet et
Thuret {Gelidiales; Santos, 1995), Mazzaslfa cornucopiae (Pos-
tels ot Ruprecht) Hommersand (Scrosati and DeWreede, 1997},
Chondrus crispus Stackhouse {Gigartinales), and Pterocladiefla
capiffacea (Emelin) Santelices et Hommersand (Gelidiales;
Scrosati and Serviére-Zaragoza, 2000).

CURRENT LIMITATIONS

Why has genet demography been so poorly investigated
for clonai red seaweeds? There seem to be three reasons.
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The first ane is the difficulty of identifying neighboring genets
when fronds are dense, up to 21 cnv? far Mazzaella cornucopiae
(Scrosati and Serviere-Zaragoza, 2000) and up to 22 cmZ for
Pterociadiella capiiacea (Scrosati, 2000), for example. High
frond densities generally prevent the accurate detection of
boundaries of crustase holdfasts and especially of stolonife-
rous ones, which often intermingle. The second reason is that
a genet may break up into clonal fragments {sensu Eriksson
and Jerling, 1990), each one composed of twe or more ramets.
Even if such clonal fragments are distant, one cannot tell
whether they represent one or more genets without knowing
their history (Fig. 1). The third reason is holdfast coalescence:
for some members of the Gigartinales and the Gracilariales,
holdfasts of young, neighboring genets may coalesce during
growth (Tveter and Mathieson, 1976; Tveter-Gallagher and
Mathieson, 1980; Maggs and Cheney, 1980; Santelices et al,
1996, 1999). At the adult stage, it is generally impossible to re-
cognize the chimeric nature of a thallus after coalescence or,
in other words, that such a thallus is composed of different
genotypes.

The extent of holdfast coalescence may be significant in
natural populations {Santelices st af, 1999). The demography
of genets of coalescent clonal seaweeds may differ from that
of nonclonal seaweeds and even clonal terrestrial plants,
which normally do not coalesce. Would coalescing genets of
clonal seaweeds grow according to density-dependent pat-
terns, as nonclonal plants generally do? Would a physical en-
counter between growing genets always result in
coalescence? Or would it result in competition, depending on
the life-history phase or genet size, age, or genotype? To ans-
wer these questions, it is necessary to develop technigues to
identify genets through time.

Figura 1. How many genets of Mazzaella cornucopiae are in this
stand? Photograph taken at the intertidal zone of Prasiola Paint
{Vancouver Island, British Columbia, Canada)} in February 1996.
Lens cap is 5 cm in diameter.
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INCORPORATING GENETIC MARKERS

The basic teehnique, which has heen used for the genus
Mazzaelfa (May, 1986; Dyck and DeWreede, 1995; Scrosati,
1998}, is the periodic mapping of genets while they are vi-
sually identifiable. For dense stands, additional techniques
are needed. One approach might be to determine the genetic
identity of ramets from a given area and, thus, to gain the abi-
lity to identify genets and clonal fragments. From mosses to
flowering plants, allozyme electrophoresis, the RAPD {ran-
dom amplified polymorphic DNA) technigue, and DNA finger-
printing have been applied to samples of ramets to distinguish
different neighboring genets (Ellstrand and Roose, 1987,
Schaal et al, 1991; Widén et al,, 1994; Cronberg, 1996; Harada
etal, 1997; McLellan et af,, 1997; Mayes ef al, 1998; Reusch of
al, 1998; Sydes and Peakall, 1998; Tyson et al., 1998; Bush and
Mulcahy, 1999; Bushakra et al., 1999; Davis et af, 1999; Kudoh
et al, 1999; Reusch et al, 1999; Sawada, 1999; Suzuki et &/,
1999; Jonsdattir et al., 2000; Pappert et al, 2000; Reusch et a/,
2000). The level of resolution of these molecular techniques
depends on the intraspecific variahility of the enzyme system
or DNA region selected for the study (Avise, 1994; Parker et
al., 1998). At first glance, the analysis of the spatial distribu-
tion of ramet genotypes with a high-resolution molecular
technique would appear to be enough to identify the genets of
a clonal seaweed population. However, there are certain res-
trictive factors,

As part of the life cyele of most red seaweeds, many
carpospores are produced within a female gametophyte,
each carpospere potentially giving rise to a tetrasporophyte
{Hawkes, 1990; Hommersand and Fredericq, 1990). Carpospo-
res are produced by a special reproductive phase referred to
as the carposporophyte (gonimocarp, sensu van den Hoek et
al., 1995), which develops within the female gametophyte af-
ter repeated mitotic events from a single zygote. Therefore,
all of the tetrasporophytes that result from carpospores from
a single carposporophyte would be genetically identical, As a
consequence, even the mast refined molecular technique will
not be able to distinguish among these tetrasporaphytes. This
may result in the underestimation of genet density if these te-
trasporophytes were wrongly interpreted as clonal fragments
from one original genet. This problem may also occur when
gametophytes are produced by other gametophytes directly
through carpospores. Some gametophytes of Mastocarpus
papiflatus (C. Agardh) Kiitzing (Gigartinales} are thought to
preduce carpospores through parthenogenesis from a single
cell (Polanshek and West, 1977; Zupan and West, 1988) and
some gametophytes of Mastocarpus stelfatus (Stackhouse)
Guiry are thought to produce carpospores from a zygote ori-
ginated through self-fertilization, lacking male-determining
alleles (Maggs, 1988). When coming from the same carpospo-
rophyte, bath kinds of carpospores will likely produce geneti-
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cally identical gametophytes, which may ulimately also re-
sult in unrealistically low numbers of genets identified. Addi-
tionally, a given tetrasporophyte may produce tetraspores
that are genetically identical for certain markers even after
meiotic recombination, which could also result in the unde-
restimation of genet (each resulting gametophyte} density.
The opposite situation, that is, the overestimation of genet
density, could occur when clonal fragments of a genet are
wrongly interpreted as sibling tetrasporophytes or partheng-
genetically derived gametophytes. The possible under- or
overestimation of genet density may also weaken avolutio-
nary considerations about reproductive strategies, since the
relative importance of recruitment and clonal fragmentation
would be incorrectly assessed.

Additional factors that may limit the accuracy of genet
identification through spatio-temporal mapping of ramet ge-
notypes are somatic mutation, mitotic recombination, apo-
meiosis, and genetic transposition. These processes might
induce genetic variation within a genet and result in an ove-
restimation of genet density {not to be confused with overes-
timating genetic diversity, which would not occur) after
sampling genetically different ramets from such a genet. Ge-
netic mosaicism has been detected for a few species of clo-
nal terrestrial plants (Gill st af, 1995).

Mutations are theught to have little effect on allele fre-
guencies in each generation of eukaryotic organisms (Giil et
al, 1995; Slatkin et af, 1995). Spontaneous mutation rates are
between 10 and 10 mutations per gene per generation
{Hartl, 1988). However, mutation rates depend on the physice-
chemical properties of the DNA, among other factors {Cock-
burn, 1997). For example, in special areas of the genome
termed VNTR {variable number of tandem repeats), mutation
rates are particularly high, up to 102 per generation (Slatkin
et al, 1995). For seaweeds, mutation rates are largely unk-
nown, although there is evidence suggesting that rates vary
across taxonomic groups (Russell, 1986).

Mitotic recombination is common in Gracilaria tikvahiae
McLachlan {Gracilariales} under laboratory conditions and is
thought to oceur in other red seaweeds as well (van der Meer
and Todd, 1977; van der Meer, 1981). Using genetic markers

- for thallus color, recombinant areas within thaili of 6. fikva-
hiae were identified as patches of different color on the sur-
face of fertile areas, aithough never on juvenile fronds.

_Mitotic recombination is apparently uncommon in other red
seaweeds: for example, the patterns of recombination descri-
bed for G. tikvahiae were not detected in Chondrus crispus
{van der Meer, 1981). For terrestrial plants, rates of mitotic re-
combination have been sstimated between 10 and 10 per
cefl {Gill et af,, 1995).
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Apomeiosis was observed in laboratory cultures of Gra-
cilaria tikvahiae, for which cytokinetic failure during tetraspo-
re formation resulted in. bi- and tetranucleate spores that
could produce genets with both male and female fronds (van
der Meer, 1977). Rates of natural occurrence of apomeiosis
are unknown for red seaweeds.

Genetic transposition has been proposed, but not yet es-
tablished, as an explanation for the dynamics of unstahle co-
lor mutations for three members of the Gracilariales (van der
Meer and Zhang, 1988). Nevertheless, the spontaneous rever-
sion of color reported for parts of the same genet represents
another case of genetic variability within genets.

EXPERIMENTAL POPULATIONS

The problems discussed above may discourage demo-
graphic studies on clonal algal genets when the history of a
stand is unknown, which is the case far most natural popula-
tions. However, genet demography may be studied under con-
trolled conditions. For example, several aquaria could be
seeded with spores that are all genetically different. By mani-
pulating spore settlement densities, abiotic variables, and the
proportion between carpospares and tetraspores, demograp-
hic patterns for gensts could be studied by periodically map-
ping their shape and the position of ramet genotypes as
genets grow. Mapping holdfast shape will be obviously easier
for seaweeds that grow in hard substrates {e.g., Chondrus
and Mazzaelfa) than for those that grow in sand {e.g., Graci-
faria). Also, it will be easier for crustose holdfasts (e.g., Chon-
drus and Mazzaella) than for stoloniferous ones {e.g.,
Gefidium and Prerocladielia).

The continuous spatial mapping of ramet genotypes will
enable ane to determine if contact areas between neighbaring
genets remain static after contact or if overgrowth occurs.
Possible coalescence between crustose holdfasts could be da-
tected through microscopic observations on holdfast samples
from contact areas, For coalescing genets, genetic sampling of
ramets should be continuous to investigate if one genatype
progressively prevails over the other within the chimeric tha-
llus. For coalescing genets of Gracilaria chilensis Bird,
McLachlan et Gliveira, different parts of a single frond may dis-
play the different original genotypes (Santelices et a/, 1996).
Thus, it may be necessary to analyze more than ane part per
frond around coalescent areas to ensure an accurate genoty-
pe mapping. For species whose holdfasts do not coalesce, but
intermingle, the periodical mapping of ramet genotypes should
enable one to determine patterns of intermingling.

If a new allelic combination arises through mitotic re-
combination in a ramet from contact areas hetween neighbo-
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ring genets, knowledge of the original genotypes may enable
one to associate the ramet to its parent if neighboring genets
are genetically different enough. The production of male and
female fronds within & genet resuiting from an apomeiotic
spore should not compromise genet identification either if the
original genotypes are known. Somatic mutation might still
complicate genet identification if it occurs in ramets arising in
contact areas, especially if one analyzes rapidly evolving
DNA areas, such as microsatellites, located in VNTR loci (Avi-
se, 1994 Jarne and Lagoda, 1995). Genetic transposition
might also be a problem if it occurs in contact areas. Genetic
differentiation within a genet occurs during the growth of
Gracilaria chifensis, as detected with RAPD markers, alt-
hough the nature of such changes is still unknown {Meneses
et al, 1933). Rates of somatic mutation and of genetic trans-
position should be estimated for red seaweeds, so their po-
tential effects on the accuracy of genet identification using
the methods suggested here can be assessed.

In conclusion, this paper proposes that determining the
changing shape of genets and the position of ramet genotypes
from experimental populations with known initial genotypes is
a potentially useful method to upgrade our understanding of
genet demography for clonal red seaweeds. Rates of genetic
change within genets should be previously estimated to design
adequate experiments,
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