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ABSTRACT1

The natural complexity of ecological communities regularly lures ecologists to collect2

elaborate data sets in which confounding factors are often present.  Although multiple regression is3

commonly used in such cases to test the individual effects of many explanatory variables on a4

continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables5

encumbers analyses and threatens their statistical and inferential interpretation.  Using numerical6

simulations, I quantified the impact of multicollinearity on ecological multiple regression and found7

that even low levels of collinearity bias analyses (r ≥ 0.28 or r2 ≥ 0.08), causing: (1) inaccurate model8

parameterization; (2) decreased statistical power; and (3) exclusion of significant predictor variables9

during model creation.  Then, using real ecological data, I demonstrated the utility of various10

statistical techniques for enhancing the reliability and interpretation of ecological multiple regression11

in the presence of multicollinearity.12

13

INTRODUCTION14

Ecologists often use multiple regression to develop models that describe the regulation of15

particular aspects of organismal, population, and community ecology (dependent or response16

variables) by various environmental and biological factors (independent or explanatory variables)17

(James and McCulloch 1990).  Multiple regression analyses, however, can be hindered by the18

complex nature of ecological data, in which targeted ecological responses are linked to many19

explanatory variables that are often correlated among each other (multicollinear).  Multicollinear20

explanatory variables are difficult to analyze because their effects on the response can be due to21

either true synergistic relationships among the variables or spurious correlations.  Ecologists often22

counter by designing experimental studies that break correlations among explanatory variables and23

analyzing the data with analyses of variance (ANOVA) that allow for the isolation of main effects24
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and higher-order interactions among individual explanatory variables (Scheffe 1959).  In practice,25

however, ecological explanatory variables are often not under experimental control, in which case the26

explanatory variables of interest may be correlated.  It is under these conditions that multiple27

regression is often used to analyze ecological data (James and McCulloch 1990).28

The statistical and inferential problems of multicollinearity in multiple regression have been29

well established in the statistical literature (e. g. Cohen and Cohen 1983, Hocking 1996, Neter et al.30

1996, Tabachnick and Fidell 1996, Draper and Smith 1998, Chatterjee et al. 2000), although31

problems specific to ecological data have rarely been discussed (James and McCulloch 1990, Phillipi32

1993, Legendre and Legendre 1998, and see Mitchell-Olds and Shaw 1987 and Petraitis et al. 199633

for related discussions of fitness regression and path analysis, respectively).  Yet, despite previous34

warnings by statisticians, only 32 of 294 (11%) papers published in Ecology, Ecological35

Monographs, Functional Ecology, Journal of Animal Ecology, and Journal of Ecology from 1993 to36

1999 that used multiple regression for data analysis even discussed the potential presence of37

multicollinearity.  Of these 32 papers, only 17 (53%) actually tested whether multicollinearity was38

present; of these 17 papers, 11 (65%) found significant multicollinearity, suggesting that ecological39

data are typically collinear.  But how desperate is the problem for ecologists?  The goal of this paper40

was two-fold: (1) to quantify through numerical simulation the statistical and inferential biases41

caused when multicollinearity is present in multiple regression analyses; and (2) to demonstrate the42

utility of various statistical techniques for enhancing the reliability and interpretation of ecological43

multiple regression in the presence of multicollinearity.44

45

THEORETICAL PROBLEMS AND EMPIRICAL CONSEQUENCES46

In multiple linear regression, data are fit to a linear model that predicts values of a response47

(Y) as the weighted sum of explanatory variables (Xi) and random error (e): Y = b0 + b1X1 + b2X2 +48
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··· + biXi + e, where b’s are regression coefficients.  The typical goal is to build a model using the49

fewest variables to explain the greatest variability in the response, and to parameterize accurately50

regression coefficients for those variables.  If all explanatory variables are independent of each other,51

each regression coefficient represents the total contribution of a given predictor to the response.  If,52

however, two or more variables are collinear to any extent, partial regression coefficients need to be53

calculated to isolate the unique contribution of a particular explanatory variable (hereafter the54

predictor) from that shared with other variables (hereafter confounders).  This unique contribution is55

the extra sums of squares.  The distinction between unique and shared contributions is the crux of56

multiple regression’s statistical and inferential problems due to multicollinearity.57

When data are standardized to a mean of zero and unit variance, the partial regression58

coefficient for a predictor in the presence of a single confounder is defined as: b =
rY1 - rY 2r12

1- r12
2 , where59

rY1 is the correlation between the response and predictor, rY2 is that between the response and60

confounder, and r12 and r2
12 are the correlation and coefficient of determination between the predictor61

and confounder (Neter et al. 1996); b reduces to b* = rY1 in the absence of multicollinearity (i. e. r1262

and r2
12 = 0).  As such, partial regression coefficients decrease non-linearly with increasing63

multicollinearity (as shown by Petraitis et al. 1996) and deviations from b* will occur in the presence64

of even the weakest multicollinearity (i. e. b < b* at all r2
12 > 0).  The marginal statistics used to test65

the significance of b (i. e. Ho:b ≠ 0), which is typically used as a criterion to determine whether a66

given predictor is to be included in a model, is defined as t =
b

SE b( )
 (or t =

rY1 - rY 2r12

MSresidual

).  Here,67

SE(b) is the standard error of the coefficient which increases linearly with increasing r2
12 (Neter et al.68

1996).  Power to detect an effect as significant will therefore also decrease non-linearly with69

increasing multicollinearity.70
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If, during stepwise variable selection, a predictor is ultimately excluded from a model due to71

its low apparent significance, regression coefficients and marginal statistics of the other variables will72

change (Mitchell-Olds and Shaw 1987, Philippi 1993, Petraitis et al. 1996, Neter et al. 1996).  The73

use of stepwise variable selection procedures that rely on calculation of marginal statistics may even74

exclude explanatory variables that are actually highly correlated with the response (i. e. decrease75

statistical power).  Furthermore, although statistical significance and fit of a final model are not76

directly affected by multicollinearity (expected sums of squares and marginal statistics are not77

computed), interpretation of the model may be uncertain due to biased parameterization of partial78

regression coefficients for individual explanatory variables.  Not only will the sum of r2 for individual79

predictors generally differ from the R2 of the final model, actual application of the final model to80

predict future values for the response can be grossly inaccurate, since none of the partial regression81

coefficients reflect shared contributions (Tabachnick and Fidell 1996).82

These statistical difficulties in analyzing ecological data in the presence of multicollinearity83

were illustrated numerically by calculating marginal t-statistics (as described above) and P-values for84

a predictor in the presence of a single confounder (Figure 1).  The purpose of the simulation was to85

estimate the level of multicollinearity that would result in the erroneous exclusion of significant86

predictors from a final model.  In general: (1) apparent significance (P or apparent a) decreased87

rapidly with increasing multicollinearity; (2) weak predictors were more vulnerable to erroneous88

exclusion than strong ones; (3) predictors with high true significance became more vulnerable to89

erroneous exclusion as the correlation between the response and confounder (rY2) increased; and, (4)90

even if correlations between the response and confounders were relatively weak, low levels of91

multicollinearity (i. e. r12 ≥ 0.28 or r2
12 ≥ 0.08) resulted in significant predictors appearing92

insignificant.93

To illustrate the negative impact of these statistical biases on the reliability and interpretation94
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of ecological multiple regression, data were re-analyzed from a study of the effect of various95

environmental factors (wave orbital displacement, wave breaking depth, wind velocity, and average96

tidal height) on the shallow (upper) distributional limit of the subtidal kelp Macrocystis pyrifera97

(Graham 1997; Appendix 1).  The overall severity of multicollinearity in these data was moderate, as98

wave orbital displacement, wave breaking depth, and wind velocity were strongly correlated among99

each other (r ≥ 0.6; VIF ≥ 2), but tidal height was only weakly correlated with the other variables (r <100

0.4; VIF = 1.17).  Although Neter et al. (1996) and Chatterjee et al. (2000) suggested that101

multicollinearity is only severe at VIFs > 10, it is clear from Figure 1 that VIFs as low as 2 can have102

significant impacts (see also Petraitis et al. 1996).  When analyzed using separate linear regressions,103

all of the explanatory variables were significant or marginally significant predictors of the response104

(i. e. P ≤ 0.1; Table 1).  Backwards stepwise multiple regression, however, suggested that only wave105

orbital displacement and wind velocity were important (Table 1; forward selection yielded the same106

final model).  Partial regression coefficients (b in standard and sequential regressions; Table 1) were107

often more than 1 SE lower than the non-partial regression coefficients (b in simple regressions;108

Table 1), reflecting the omission of variability in the response shared among predictors.  Thus,109

although wave-breaking depth was initially identified as important (Table 1), this was due almost110

entirely to variability shared with wave orbital displacement.  Many would argue that the removal of111

wave breaking depth was therefore necessary because it was a redundant variable, however, there112

was no evidence that wave-breaking depth wasn’t the variable functionally responsible for the shared113

contribution.  Clearly, for two highly collinear explanatory variables that have a strong shared114

contribution to the response, the decision as to which is the most important predictor, and should115

therefore be retained, is very ambiguous.116

117

SOME OLD AND NOT-SO-OLD SOLUTIONS118
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If the entire goal of conducting a multiple regression analysis is to develop a model that best119

predicts variability in the response, and there is no interest in studying particular relationships120

between the response and explanatory variables, then the problems due to multicollinearity can be121

effectively ignored (i.e. “the proof is in the pudding” scenario).  In most ecological studies, however,122

researchers are interested in examining the effects of particular explanatory variables, in which case123

various techniques are available for addressing the statistical pitfalls of multicollinearity.  One124

approach is to avoid or stabilize the use of marginal statistics for variable selection.  The easiest way125

to do this is to simply drop collinear variables from analysis (Philippi 1993, Legendre and Legendre126

1998).  Variable exclusion, however, ignores the unique contribution of the omitted variable and can127

result in a substantial loss of explanatory power (Carnes and Slade 1988, James and McCulloch128

1990) as well as inferential problems in choosing which variables should remain (Mitchell-Olds and129

Shaw 1987).  Another method is to avoid using marginal statistics during variable selection by130

predetermining model composition (a priori modeling).  This circumvents the problem of choosing131

which collinear variables should be excluded.  In the absence of a reasonable a priori model,132

marginal statistics can also be avoided by using an “all possible subsets” method of analysis (Furnival133

1971).  F-statistics and coefficients of determination are calculated for all possible combinations134

(subsets) of variables, and the subset with the greatest fit is identified as “best” using adjusted R2 (or135

Akaike’s Information Criteria, Mallow’s Cp, PRESS, MSE, etc.; Neter et al. 1996).  Since distinctions136

are not made between unique and shared contributions, all possible subsets analyses can help to137

identify reliably the final model that explains the most variability in the response, although the138

number of potential subsets can become analytically untreatable as the number of variables increases.139

An alternative to avoiding marginal statistics is to stabilize them using ridge regression, in which a140

constant is applied to the elements of the correlation matrix so that it is displaced from singularity,141

increasing the precision of the coefficients (Birkes and Dodge 1993).  A problem with all of these142
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methods is that they still require the use of marginal statistics to estimate regression coefficients or143

determine the relative importance of individual explanatory variables, and thus offer no refuge from144

associated biases due to multicollinearity.145

A more purposeful approach to solving the problems due to multicollinearity is to explore the146

functional nature of the collinearities, rather than avoid them.  This requires methods for identifying147

and parameterizing the unique and shared contributions of explanatory variables to a response.  Here148

I used the kelp forest example data to illustrate how three such methods (residual/sequential149

regression, principle components regression, and structural equation modeling) can improve the150

reliability and interpretation of ecological multiple regression in the presence of multicollinearity.151

Residual and sequential regression - When multicollinearity is limited to pairs of explanatory152

variables, the easiest way to disentangle unique from shared contributions is simply to assume that153

one variable is functionally more important than the other, assign the more important variable priority154

over the shared contribution, and ignore the shared contribution when analyzing the less important155

variable.  This can be done by regressing the less important variable against the other, and replacing156

the less important variable with the residuals from the regression (see for example, Graham 1997).157

Priorities can be based on a researcher’s own instincts and intuition, previously collected data, data158

currently under analysis, or the results of prior experiments that estimated the relative importance of159

one factor over another.  Subsequent multiple regression analyses (residual regressions) will be160

unbiased since the explanatory variables are no longer statistically collinear.  As multicollinearity161

among explanatory variables becomes more complicated, a modification of sequential regression (or162

hierarchical regression) can be used.  Here it is also assumed that some variables are functionally163

more important than others, but fixed priorities are assigned to shared contributions for all variables164

in the model (Tabachnick and Fidell 1996).  Marginal statistics are computed for variables in order of165

highest to lowest priority, with any given variable’s marginal statistics ignoring variability already166
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explained by higher priority variables.  As such, the rank (order) of marginal statistics remains167

constant as variables are added or removed from the model, and the decision as to whether a168

particular variable should remain in the model does not depend on the presence of other variables.169

Furthermore, both unique and shared contributions are represented in the final parameterized model170

by the regression coefficients and coefficients of determination.  The major concern when using these171

methods is whether the assigned priorities are relevant to the true functional importance of the172

variables, and thus, it is vital that researchers are critical of the criteria used to assign priorities.173

The final model from a sequential regression analysis of the example data is presented in174

Table 1, where priorities were based on the unique contributions of each explanatory variable.175

Regression coefficients and the rank of marginal statistics were constant for each variable selection176

step (Appendix 2C) and confirmed that, by assigning fixed priorities, the decision as to whether a177

particular variable should remain in the model does not depend on the presence of other variables and178

model composition is not affected by the use of marginal statistics.  It was concluded from this179

analysis that the unique contribution of wave orbital displacement, plus its shared contribution with180

winds, was the most important predictor of the response, but that the unique contribution of winds181

was also important (Graham 1997).  Note that, although the standard and sequential multiple182

regressions yielded the same final models, with sequential regression analyses both unique and183

shared contributions are represented by the regression coefficients and coefficients of determination,184

and the individual r2 values summed to R2.185

Principal components regression - Alternatively, in principal components regression it is not186

generally believed that multicollinearity can be understood best by a hierarchical assignment of187

priorities, but that collinearities indicate the presence of underlying (latent) variables that are188

responsible for the shared contributions (Tabachnick and Fidell 1996).  A principal components189

analysis is done on the explanatory variables which identifies vectors (i.e. the linear combinations of190
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variables) that account, successively, for the greatest variation in the observations of the explanatory191

variables; the principal components analysis is done in complete disregard of observed variability in192

the response.  Scores of the orthogonal principal components are used as explanatory variables in a193

subsequent multiple regression analysis (Philippi 1993, Tabachnick and Fidell 1996, Legendre and194

Legendre 1998).  Since principal components are orthogonal, partial regression coefficients and the195

rank of marginal statistics do not fluctuate as variables are added or removed and the results of196

principal components regression will be stable regardless of the severity of multicollinearity.  Given197

that variable selection is unbiased in principal components regression, all principal components can198

and should be included during variable selection, avoiding the concerns of Mitchell-Olds and Shaw199

(1987) that explanatory power may be lost by limiting analyses to only those variables with high200

eigenvalues.  The primary limitation of principal components regression lies in the biological201

interpretation of the principal components.202

A principal components analysis was performed on the example data (Appendix 3).  PC1203

accounted for 64% (l = 2.57) of the variability among the variables, with wave orbital displacement,204

wave breaking depth, and wind velocity loading heavily and positively on this PC (all loadings ≥205

0.86); average tidal height loaded moderately and negatively (loading = -0.54).  PC1 thus represented206

high wave intensity, high wind velocity, and low tide height, or the occurrence of storms during low207

tides (see Graham [1997] for a detailed biological interpretation of these data).  PC2 explained only208

20% of the variability (l = 0.81) and appeared to represent mostly tides (loading = 0.84; all others ≤209

0.26).  PC3 explained less than 10% of the variability (l = 0.37) and primarily represented wind210

activity (loading = 0.49; all others ≤ 0.19).  PC4 explained approximately 6% of the variability (l =211

0.26) and represented differences in the two estimates of wave intensity (OD and BD loaded –0.39212

and 0.29 respectively; all others ≤ 0.13).  The subsequent principal components regression confirmed213

the stability of regression coefficients and marginal statistics (Appendix 3C) and that individual r2214
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values also summed to the total R2 for the final model (Table 1).  Not surprisingly, the PC that215

represented the occurrence of storms (PC1) explained the greatest amount of variation in the216

response.  The importance of winds (PC3), however, was not emphasized in the principal components217

regression.  Instead, PC4 was retained suggesting the importance of distinguishing between different218

aspects of wave intensity, despite the fact that PC4 explained only ~6% of the variability among219

explanatory variables.  That the sequential and principal components regression analyses yielded220

different results when applied to identical data highlights the importance of determining whether221

latent variables are likely driving variability in the measured explanatory variables.222

Structural equation modeling - Like residual/sequential regression and principal components223

regression, in structural equation modeling (SEM) it is generally assumed that the best functional224

multiple regression model is one that can account for both unique and shared contributions.225

Moreover, like a priori modeling, SEM does not simply explore data to search for relationships226

between the response and explanatory variables, but rather sets out to test and parameterize227

hypothesized relationships among the variables.  As such, SEM can be used to develop accurate and228

meaningful final multiple regression models when collinearities among explanatory variables are229

thought to be present (Hayduk 1987, Loehlin 1987, Bollen 1989, Bentler 1995, Ullman 1996, Shipley230

1999).  Hypothetical causal links among variables (both unique and shared contributions) are231

specified and structural equations (models) are developed that represent each potential combination232

of links.  Regression coefficients are then parameterized simultaneously for each link of each model233

(Bentler 1995, Ullman 1996) and the overall fit of the models are compared as with “all possible234

subsets” techniques (see above).  In its generalized form, SEM directly incorporates latent variables235

into its models that can represent shared contributions (Ullman 1996; for ecological examples see236

Brown and Weis 1995, Bishop and  Schemske 1998, Gough and Grace 1999), and thus avoids many237

of the problems identified by Petraitis et al. (1996) for path analysis.  Still, the successful application238
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of SEM to ecological data is vulnerable to inferential errors made during model development and239

selection (Ullman 1996; Shipley 1999): for example, alternate models may exist that differ greatly in240

the form of their hypothetical causal links, yet may explain similar amounts of variability in the241

response.242

An SEM was developed for the example data, representing one potential relationship between243

the four predictor variables (wave orbital displacement, wave breaking depth, average tidal height244

and wind velocity) and the response (giant kelp shallow limit) (Figure 2; Appendix 4).  It was245

hypothesized that two latent variables were important in driving variability in the response.  The first246

structural equation specified that the latent variable wave intensity could be estimated by a linear247

combination of wave orbital displacement and wave breaking depth.  The second structural equation248

specified that the latent variable storm intensity could be estimated by a linear combination of wind249

velocity, average tidal height, and the latent variable wave intensity.  The final structural equation250

simply specified the linear relationship between the latent variable storm intensity and the response.251

Again, the results of the parameterized SEM support the conclusions of the sequential and principal252

components regressions, identifying the underlying importance of storm activity during low tides in253

driving variability in giant kelp upper limits.  Furthermore, by including latent variables into the254

model, various unique and shared contributions among explanatory variables were explicitly255

parameterized.  However, although R2 was almost identical among the various methods (i. e. 0.59-256

0.60), the adjusted R2 was in fact lower for the SEM (0.51) than the sequential (0.57) and principal257

components (0.55) regressions, due to the greater number of SEM regression coefficients that needed258

to be parameterized.  Thus, although the incorporation of latent variables adds flexibility during259

model development, SEM may not provide the greatest explanatory power for all data analyses.260

Post-analysis – The application of one of the above techniques should not be considered the261

final step in analysis of collinear data.  First, each technique demands the standard set of parametric262
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assumptions: normality, constant variance and independence of error terms.  As such, thorough263

analysis of model residuals should always follow the application of multiple regression techniques.264

Some techniques (e.g. principal components analysis) additionally require (1) non-singular matrices265

of the correlation-covariance among explanatory variables, and (2) that the number of observations of266

the response greatly exceeds the number of explanatory variables (Tabachnick and Fidell 1996).267

Second, the generality of estimated regression coefficients should be validated against data that are268

collected independently of those used during model parameterization.  Such validation procedures269

may also be useful for assessing whether a given multiple regression technique offers the greatest270

explanatory power.  Finally, structural equation modeling and residual, sequential, and principal271

components regression all deal with shared vs. unique variance contributions differently, and272

therefore provide diverse perspectives as to the nature of the underlying multicollinearity.  As such,273

ecologists will likely find it most useful to explore multicollinear data with a combination of274

techniques.275

276

CONCLUSION277

This study has quantitatively shown that statistical and inferential problems created by278

multicollinearity can be extremely severe under realistic ecological conditions.  Although279

straightforward techniques exist for diagnosing and remediating the effects of multicollinearity in280

multiple regression, they are not commonly utilized in ecology.  Still, most of these procedures only281

help to stabilize the statistical analyses, making them less biased, less subjective, and more282

repeatable, but only the statistical collinearity will have been removed from the data.  The283

explanatory variables are still, by nature and in nature, correlated, whether or not functionally.  Aside284

from designing manipulative experiments to break correlations among explanatory variables, no285

technique exists that allows researchers to infer the different functional relationships between the286
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response and explanatory variables.  Experiments, however, cannot be applied under all field287

situations and are especially difficult during the exploratory stage of data collection and model288

development.  It is then that the determination of relative importance of individual explanatory289

variables via sampling, and thus a distinction between unique and shared variance contributions,290

becomes important.  The suite of techniques described herein compliment each other and offer291

ecologists useful alternatives to standard multiple regression for identifying ecologically relevant292

patterns in collinear data.  Each comes with its own set of benefits and limitations, yet together they293

allow ecologists to directly address the nature of shared variance contributions in ecological data.294
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Table 1. Simple linear regressions, and final models from standard multiple regression, sequential344

regression, and principal components regression (final models are after removal of insignificant345

explanatory variables; P-values ≥ 0.15).  Model intercepts were significant for all models (P <346

0.0001) and are not given.  r2 in standard and principal components regressions represent total347

contributions, whereas in the sequential regression, r2 represents either unique or unique + shared348

contributions as determined by assigned priorities.349

350

Method Variable b SE t Fdf=2,35 P r2

Simple wave orbital displacement 0.194 0.030 - 43.58 < 0.001 0.55
wave breaking depth 0.072 0.017 - 17.41 < 0.001 0.33

wind velocity 0.018 0.003 - 29.15 < 0.001 0.45

tidal height -0.358 0.191 - 3.53 0.068 0.09

Standard wave orbital displacement 0.139 0.038 3.62 - 0.001 0.55

wind velocity 0.008 0.004 2.10 - 0.043 0.45

Total - - - 26.06 < 0.001 0.60

Sequential wave orbit. displ. (1st prior.) 0.194 0.028 6.91 - < 0.001 0.55

wind velocity (2nd prior.) 0.008 0.004 2.09 - 0.043 0.05

Total - - - 26.06 < 0.001 0.60

principal component 1 0.157 0.024 6.66 - < 0.001 0.54Principal
components principal component 4 -0.039 0.024 -1.69 - 0.100 0.03

Total - - - 23.62 < 0.001 0.57
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FIGURE LEGENDS351

Figure 1.  A) Effect of multicollinearity on predictor apparent significance (P or apparent a) in the352

presence of a single confounder.  Multicollinearity was represented by r2
12 and variance inflation353

factors (VIF =
1

1-*R2 ; *R2 is the R2 when explanatory variable i is regressed on all other variables354

in model).  rY1 values were chosen to provide specific levels of “true” significance in355

the absence of multicollinearity (a; given on each line).  MSresidual  equaled 0.1 for 35 df and was356

taken from real standardized data.  Predictors with apparent P-values that increased to ≥ 0.15357

were considered to be negatively affected by multicollinearity; all true P-values were ≤ 0.05 in358

this exercise.  B) Effect of multicollinearity on the exclusion of a significant predictor.  The y-359

axis is the true significance of predictors (expressed as P) that would have been excluded during360

variable selection.  Data were obtained by setting t = 1.47 (corresponding to P = 0.15 for 35 df)361

and solving for “true” significance (rY1) as a function of various levels of multicollinearity (r2
12 or362

VIF) and confounder strength (rY2; given on each line).363

364

Figure 2.  A structural equation model representing the relationship between four measured365

explanatory variables (wave orbital displacement [OD], wave breaking depth [BD], average tidal366

height [LTH], and wind velocity [W]), two latent variables (storm intensity and wave activity),367

and the response variable (giant kelp shallow limit).  Arrows depict the proposed links between368

each variable.  Parameterized regression coefficients are associated with each link.  The369

coefficients were parameterized using iterative normal-theory maximum likelihood available with370

EQS 6 for Windows.  The latent variables were developed using the covariance matrix and371

varimax rotation, and initiated using adjusted principal components according to Bentler (1995).372
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Appendix 1.  A) Original kelp forest example data and B) SYSTAT output for backwards stepwise
multiple regression.  Response = depth of giant kelp shallow limit (in meters); OD = wave orbital
displacement (in meters); BD = wave breaking depth (in meters); LTD = average tidal height (in
meters); W = wind velocity (in meters/s).  Backwards stepwise multiple regression was run using
MGLH:REGRESSION under the STATS menu in SYSTAT 5.2 for Macintosh.  Response was the
dependent variable; CONSTANT, OD, BD, LTD, and W were the dependent variables; Stepwise was
set to custom, with a backwards step order, and P = 0.15 to remove.  Only standard SYSTAT output
is presented.

A)
Response OD BD LTD W

3.241 2.0176 4.87 -0.59 -4.1
3.032 1.9553 4.78 -0.75 4.7
3.100 1.8131 3.14 -0.38 -4.9
3.156 2.5751 3.28 -0.16 -3.2
3.110 2.2589 3.28 0.01 5.6
3.127 2.5448 4.87 -0.19 4.1
3.456 2.6291 6.27 -0.14 5.3
3.244 3.1553 7.16 -0.43 23.5
3.565 3.4030 7.24 -0.34 13.3
3.116 2.8150 7.16 -0.33 -4.5
3.186 1.9012 4.78 -0.27 -4.7
3.210 2.1463 3.28 -0.20 -4.6
3.215 2.5851 3.47 -0.48 -4.0
3.368 2.0830 3.14 -0.26 -2.0
3.170 1.7192 4.78 -0.09 -2.8
3.625 3.5471 4.78 -0.17 3.5
3.445 3.6720 7.16 -0.34 13.2
3.680 4.7259 8.65 -0.54 20.6
3.618 3.6039 8.65 -0.70 14.1
3.824 4.1214 6.16 -0.46 8.3
3.345 3.4940 4.87 -0.31 6.8
3.168 3.4829 5.82 -0.34 -4.7
3.200 2.0793 3.47 -0.42 -3.7
3.038 2.0315 3.14 -0.37 -4.4
2.992 1.7356 3.14 -0.42 -4.7
3.001 1.4569 3.14 -0.25 -4.3
3.183 1.8559 3.28 -0.02 -4.4
3.277 2.6173 3.28 -0.29 4.6
3.231 2.8782 5.82 -0.31 7.6
3.517 2.7842 4.78 -0.32 17.8
3.125 3.3236 7.16 -0.10 -3.6
3.063 2.8799 3.47 -0.09 -3.7
3.155 1.9654 3.47 -0.07 -5.0
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3.049 1.5116 3.28 -0.31 -5.0
3.082 1.7465 3.28 -0.34 -4.2
3.023 1.0967 3.14 -0.06 -4.4
3.042 2.9802 3.28 -0.28 4.1
3.515 3.0644 3.28 -0.52 8.5

B)

DEPENDENT VARIABLE: RESPONSE

MINIMUM TOLERANCE FOR ENTRY INTO MODEL =  0.010000

STEP #0;  R= 0.775; RSQUARE=  0.601

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1433 0.046 0.55 0.38836 9.57 0.0040
3 BD -0.0042 0.021 - 0.03 0.42462 0.04 0.8402
4 LTD -0.0596 0.142 -0.05 0.85087 0.17 0.6791
5 W 0.0079 0.004 0.30 0.47748 3.57 0.0677

OUT PART. CORR
---
none

STEP #1;  R= 0.775; RSQUARE=  0.600

TERM REMOVED: BD

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1384 0.038 0.53 0.53399 13.0 0.0011
4 LTD -0.0553 0.139 -0.05 0.87021 0.16 0.6938
5 W 0.0077 0.004 0.29 0.50605 3.69 0.0629

OUT PART. CORR
---
3 BD -0.035 N/A N/A 0.42462 0.04 0.8402

STEP #2;  R= 0.773; RSQUARE=  0.598

TERM REMOVED: LTD
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IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1392 0.038 0.53 0.53564 13.0 0.0009
5 W 0.0081 0.004 0.31 0.53564 4.41 0.0431

OUT PART. CORR
---
3 BD -0.025 N/A N/A 0.43420 0.02 0.8861
4 LTD -0.068 N/A N/A 0.87021 0.16 0.6938

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
D
W

PARAMETERIZATION OF FINAL MODEL

DEP VAR: RESPONSE N: 38; MULTIPLE R: 0.773; SQUARED MULTIPLE R: 0.598;
ADJUSTED SQUARED MULTIPLE R: 0.575;STANDARD ERROR OF ESTIMATE: 0.139

VARIABLE COEFF SE STD COEF TOLER F P
CONST 2.873 0.097 0.00 N/A 30.0 0.0000
OD 0.139 0.038 0.53 0.53564 3.62 0.0009
W 0.008 0.004 0.31 0.53564 2.10 0.0431

ANALYSIS OF VARIANCE

SOURCE SS DF MS F P
REGRESSION 1.012 2 0.51 26.06 0.0000
RESIDUAL 0.679 35 0.02



22

Appendix 2.  A) Transformed (residual) kelp forest example data, B) residual transformation equations,
and C) SYSTAT output for backwards stepwise sequential regression.  OD = original wave orbital
displacement (in meters); W’ = wind velocity (in meters/s) after removing variability shared with OD;
LTD’ = average tidal height (in meters) after removing variability shared with OD, and W’; BD’ = wave
breaking depth (in meters) after removing variability shared with OD, W’, and LTD’.  Transformed data
were created by applying residual transformation equations (B) to original explanatory variables (in
Appendix 1A).  Backwards stepwise multiple regression was then run on the transformed data using
MGLH:REGRESSION under the STATS menu in SYSTAT 5.2 for Macintosh.  Response was the
dependent variable (from Appendix 1A); CONSTANT, OD, W’, LTD’, and BD’ were the dependent
variables; Stepwise was set to custom, with a backwards step order, and P = 0.15 to remove.  Only
standard SYSTAT output is presented.

A)

OD W’ LTD’ BD’
2.0176 -2.3069 -0.3345 0.8405
1.9553 6.9168 -0.4360 0.2463
1.8131 -1.7159 -0.1331 -0.4061
2.5751 -5.1990 0.1102 -0.9968
2.2589 5.7518 0.3348 -0.8777
2.5448 2.3071 0.1291 0.2540
2.6291 2.9337 0.1886 1.5515
3.1553 17.5546 0.0298 0.6901
3.4030 5.6697 0.0547 1.0574
2.8150 -8.1308 -0.0648 2.4984
1.9012 -2.1152 -0.0204 1.2344
2.1463 -3.6823 0.0541 -0.4803
2.5851 -6.067 -0.2150 -1.1031
2.0830 -0.6518 0.0107 -0.7307
1.7192 1.0228 0.1697 1.5349
3.5471 -5.1104 0.1606 -0.9351
3.6720 3.7400 0.0582 0.6741
4.7259 3.9715 -0.0754 0.4077
3.6039 5.1032 -0.2968 1.8369
4.1214 -4.2168 -0.0880 -0.7307
3.4940 -1.4492 0.0421 -1.0807
3.4829 -12.8737 -0.0658 0.3931
2.0793 -2.3266 -0.1608 -0.4776
2.0315 -2.7015 -0.1163 -0.6696
1.7356 -0.9888 -0.1729 -0.3671
1.4569 1.3069 -0.0046 0.1044
1.8559 -1.5071 0.2310 0.0242
2.6173 2.3140 0.0336 -1.5433
2.8782 3.5394 0.0380 0.5367
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2.7842 14.3787 0.0955 -0.8858
3.3236 -10.6902 0.1792 2.1056
2.8799 -7.7722 0.1816 -1.0617
1.9654 -2.8519 0.1786 0.0667
1.5116 0.2348 -0.0684 0.1544
1.7465 -0.5629 -0.0894 -0.1825
1.0967 3.6569 0.1792 0.7131
2.9802 -0.6544 0.0459 -1.9251
3.0644 3.1728 -0.1630 -2.4704

B)

TRANSFORMATION EQUATION 1:

W regressed against OD USING SIMPLE LINEAR REGRESSION

DEP VAR: W N: 38  MULTIPLE R: 0.681; SQUARED MULTIPLE R: 0.464; ADJUSTED
SQUARED MULTIPLE R: 0.449; STANDARD ERROR OF ESTIMATE: 6.032

VARIABLE COEFF SE STD COEF TOLER F P
CONST -15.5166 3.297 0.00 N/A -4.71 0.0000
OD 6.8019 1.218 0.68 1.0 5.59 0.0000

ANALYSIS OF VARIANCE

SOURCE SS DF MS F P
REGRESSION 1135.46 1 1135.46 31.02 0.0000
RESIDUAL 1309.77 36 36.38

W’ = W +15.5166 + (-6.8019 * OD)

TRANSFORMATION EQUATION 2:

LTD regressed against OD and W’ USING SIMPLE LINEAR REGRESSION

DEP VAR: LTD N: 38; MULTIPLE R: 0.360; SQUARED MULTIPLE R: 0.130;
ADJUSTED SQUARED MULTIPLE R: 0.080; STANDARD ERROR OF ESTIMATE: 0.177

VARIABLE COEFF SE STD COEF TOLER F P
CONST -14.6982 0.094 0.00 N/A -1.57 0.1249
OD -0.06152 0.035 -0.28 1.0 -1.78 0.0835
W’ -0.00676 0.008 -0.23 1.0 -1.43 0.1614

ANALYSIS OF VARIANCE
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SOURCE SS DF MS F P
REGRESSION 0.15 2 0.08 2.61 0.0877
RESIDUAL 1.02 35 0.03

LTD’ = LTD +14.6982 + (0.06152 * OD) +(0.00676 * W’)

TRANSFORMATION EQUATION 3:

BD regressed against OD, W’, AND LTD’ USING SIMPLE LINEAR REGRESSION

DEP VAR: BD N: 38; MULTIPLE R: 0.759; SQUARED MULTIPLE R: 0.575; ADJUSTED
SQUARED MULTIPLE R: 0.538; STANDARD ERROR OF ESTIMATE:  1.161

VARIABLE COEFF SE STD COEF TOLER F P
CONST 0.73579 0.634 0.00 N/A 1.16 0.2542
OD 1.52702 0.234 0.73 1.0 6.52 0.0000
W’ 0.05388 0.032 0.19 1.0 1.68 0.1021
LTD’ -1.00787 1.147 -0.09 1.0 -0.88 0.3856

ANALYSIS OF VARIANCE

SOURCE SS DF MS F P
REGRESSION 62.07 3 20.69 15.36  0.0000
RESIDUAL 45.81 34 1.35

BD’ = BD – 0.73579 + (-1.52702 * OD) +(-0.05388 * W’) +(1.00787 * LTD’)

C)

DEPENDENT VARIABLE: RESPONSE

MINIMUM TOLERANCE FOR ENTRY INTO MODEL =  0.010000

STEP #0;  R= 0.775; RSQUARE=  0.601

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1942 0.029 7.40 1.0 45.0 0.0000
3 W’ 0.0081 0.004 0.22 1.0 4.18 0.0489
4 LTD’ -0.0553 0.141 -0.04 1.0 0.15 0.6980
5 BD’ 0.0043 0.021 -0.02 1.0 0.04 0.8403

OUT PART. CORR
---
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none

STEP #1;  R= 0.775; RSQUARE=  0.600

TERM REMOVED: BD’

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1942 0.0284 7.40 1.0 47.0 0.0000
3 W’ 0.0081 0.0039 0.22 1.0 4.30 0.0457
4 LTD’ -0.0553 0.1393 -0.04 1.0 0.16 0.6938

OUT PART. CORR
---
5 BD’ -0.035 N/A N/A 0.42462 0.04 0.8403

STEP #2;  R= 0.773; RSQUARE=  0.598

TERM REMOVED: LTD’

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 OD 0.1941 0.0284 7.40 1.0 48.0 0.0000
3 W’ 0.0081 0.0038 0.22 1.0 4.41 0.0431

OUT PART. CORR
---
4 LTD’ -0.068 N/A N/A 1.0 0.16 0.6938
5 BD’ -0.035 N/A N/A 1.0 0.04 0.8383

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
OD
W’

PARAMETERIZATION OF FINAL MODEL

DEP VAR: RESPONSE N: 38; MULTIPLE R: 0.773; SQUARED MULTIPLE R: 0.598;
ADJUSTED SQUARED MULTIPLE R: 0.575; STANDARD ERROR OF ESTIMATE:  0.139

VARIABLE COEFF SE STD COEF TOLER F P
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CONST 2.748 0.076 0.00 N/A 36.0 0.0000
OD 0.194 0.028 0.74 1.0 6.91 0.0000
W’ 0.008 0.004 0.22 1.0 2.09 0.0431

ANALYSIS OF VARIANCE

SOURCE SS DF MS F P
REGRESSION 1.012 2 0.51 26.06 0.0000
RESIDUAL 0.679 35 0.02



27

Appendix 3. A) Transformed (PC scores) kelp forest example data, B) principal components analysis
(PCA), and C) SYSTAT output for backwards stepwise principal components regression.  PC1-4 are the
saved principal components scores after the PCA (B) was done on the original explanatory variables (in
Appendix 1A).  The PCA was run using FACTOR:PRINCIPAL COMPONENTS under the STATS
menu in SYSTAT 5.2 for Macintosh.  The PCA utilized the correlation matrix with no factor rotations.
Backwards stepwise multiple regression was then run on the transformed data using
MGLH:REGRESSION under the STATS menu in SYSTAT 5.2 for Macintosh.  Response was the
dependent variable (from Appendix 1A); CONSTANT, PC1, PC2, PC3, and PC4 were the dependent
variables; Stepwise was set to custom, with a backwards step order, and P = 0.15 to remove.  Only
standard SYSTAT output is presented.

A)

PC1 PC2 PC3 PC4
-0.1194 -1.9529 -1.0884 0.4859
0.3886 -2.7882 0.2971 0.9228

-0.8321 -1.0240 -0.0552 -0.1100
-0.6746 0.6035 0.0311 -1.0885
-0.6464 1.6024 1.6515 0.2333
-0.0340 0.7130 0.3070 0.4513
0.2707 1.2200 -0.2785 1.3548
1.7626 0.1170 1.8009 1.8021
1.3558 0.5953 0.0933 0.8514
0.3477 0.1418 -2.5273 0.7823

-0.5901 -0.1526 -0.8996 0.9476
-0.8651 0.1788 -0.0810 -0.4235
-0.2864 -1.2485 -0.4044 -1.3741
-0.7414 -0.1732 0.3983 -0.3001
-0.8016 0.8536 -0.4247 1.5977
0.3207 1.2078 -0.0484 -1.4851
1.4487 0.6912 0.0356 0.2927
2.7304 0.2294 -0.0694 -0.4223
2.1808 -1.2472 -0.8526 1.0804
1.3784 -0.0214 -0.4114 -1.6429
0.6181 0.4307 0.3622 -1.2696
0.3647 0.1887 -2.0314 -1.3717

-0.5576 -1.0948 -0.1569 -0.3522
-0.7316 -0.8714 -0.0388 -0.4732
-0.8090 -1.2850 -0.0229 0.0035
-1.1110 -0.3982 0.2358 0.7282
-1.1921 1.1163 0.1555 0.3211
-0.1816 -0.0200 1.1906 -0.8164
0.5818 0.3096 0.1576 0.5554
0.7670 0.2465 2.4016 0.6682



28

0.3259 1.6985 -2.4039 0.1415
-0.6122 1.1473 -0.2100 -1.4843
-1.0737 0.8814 -0.1131 0.1529
-1.0179 -0.7206 -0.0095 0.6115
-0.8507 -0.7902 0.0251 0.1936
-1.4915 0.5653 0.4526 1.5942
-0.0616 0.1748 1.0000 -1.5106
0.4394 -1.1248 1.5318 -1.6479

B)

PRINCIPAL COMPONENTS ANALYSIS OF OD, BD, LTD, AND W.

LATENT ROOTS (EIGENVALUES)

PC1 PC 2 PC3 PC4
2.56537 0.80552 0.37082 0.25829

COMPONENT LOADINGS

VARIABLE PC1 PC 2 PC3 PC4
OD 0.87771 0.26037 -0.09692 -0.39044
BD 0.87347 0.16099 -0.35373 0.29328
LTD -0.54211 0.83786 0.04084 0.04939
W 0.85917 0.09901 0.484399 0.13188

VARIANCE EXPLAINED BY COMPONENTS

PC1 PC 2 PC3 PC4
2.56537 0.80552 0.37082 0.25829

PERCENT OF TOTAL VARIANCE EXPLAINED

PC1 PC 2 PC3 PC4
64.1342 20.1380 9.2706 6.4572

C)

DEPENDENT VARIABLE: RESPONSE

MINIMUM TOLERANCE FOR ENTRY INTO MODEL =  0.010000

STEP #0;  R= 0.775; RSQUARE=  0.601

IN
---
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VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 PC1 0.1571 0.0235 0.73 1.0 45.0 0.0000
3 PC2 0.0267 0.0235 0.12 1.0 1.29 0.2651
4 PC3 0.0219 0.0235 0.10 1.0 0.87 0.3564
5 PC4 -0.0398 0.0235 -0.19 1.0 2.86 0.1003

OUT PART. CORR
---
none

STEP #1;  R= 0.768; RSQUARE=  0.590

TERM REMOVED: PC3

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 PC1 0.1571 0.0235 0.73 1.0 45.0 0.0000
3 PC2 0.0267 0.0235 0.12 1.0 1.29 0.2640
5 PC4 -0.0398 0.0235 -0.19 1.0 2.87 0.0994

OUT PART. CORR
---
4 PC3 0.161 N/A N/A 1.0 0.87 0.3564

STEP #2;  R= 0.758;  RSQUARE=  0.574

TERM REMOVED: PC2

IN
---
VARIABLE COEFF SE STD COEF TOLER F P
1 CONST
2 PC1 0.1571 0.0235 0.73 1.0 44.0 0.0000
5 PC4 -0.0398 0.0236 -0.19 1.0 2.85 0.1005

OUT PART. CORR
---
3 PC2 0.19 N/A N/A 1.0 1.29 0.2640
4 PC3 0.158 N/A N/A 1.0 0.87 0.3582

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
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PC1
PC4

PARAMETERIZATION OF FINAL MODEL

DEP VAR: RESPONSE N: 38; MULTIPLE R: 0.758  SQUARED MULTIPLE R: 0.574;
ADJUSTED SQUARED MULTIPLE R: 0.550    STANDARD ERROR OF ESTIMATE:  0.143

VARIABLE COEFF SE STD COEF TOLER F P
CONST 3.2498 0.0233 0.00 N/A 140.0 0.0000
PC1 0.1571 0.024 0.74 1.0 6.65 0.0000
PC4 -0.0398 0.024 -0.19 1.0 -1.69 0.1005

ANALYSIS OF VARIANCE

SOURCE SS DF MS F P
REGRESSION 0.97 2 0.49 23.6 0.0000
RESIDUAL 0.72 1 35 0.02
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Appendix 4. A) Protocol for creating EQS structural equation models, B) EQS program file, 3) EQS
output (regression coefficients) for structural equation model on the original explanatory variables (in
Appendix 1A).  Only truncated EQS output is presented.

A)

1. CREATE PROGRAM FILE BY USING TITLE/SPECIFICATIONS UNDER BUILD EQS
MENU.

a. USE DEFAULT SETTINGS WITH: NORMAL THEORY ESTIMATORS SET TO ML
(MAXIMUM LIKELIHOOD), VARIABLES SET TO 5, AND CASES SET TO 38.

2. CREATE EQUATIONS USING EQUATIONS UNDER BUILD EQS MENU.

a. SET NUMBER OF VARIABLES TO 5; SET NUMBER OF FACTORS TO 2

b. BUILD THE FOLLOWING CREATE EQUATIONS BOX:

F1 F2 Response OD BD LTD W E or D
Response * 1

OD 1
BD 1

LTD 1
W 1
F1 * * * 1
F2 * * 1

c. USE DEFAULT CREATE VARIANCE/COVARIANCE BOX

3. RUN EQS

B)

RESULTING EQS PROGRAM file

1 /TITLE
2 EQS model created by EQS 6 for Windows -- c:\eqs6\kelp.ess
3 /SPECIFICATIONS
4 DATA='c:\eqs6\kelp.ess';
5 VARIABLES=5; CASES=38; GROUPS=1;
6 METHODS=ML;
7 MATRIX=RAW;
8 ANALYSIS=COVARIANCE;
9 /LABELS
10 V1=Response; V2=OD; V3=BD; V4=LTD; V5=W;



32

11 /EQUATIONS
12 V1 =  + *F1  + 1E1;
13 F1 =  + *F2  + *V4 + *V5 + 1D1;
14 F2 =  + *V2 + *V3 + 1D2;
15 /VARIANCES
16 V2 = *;
17 V3 = *;
18 V4 = *;
19 V5 = *;
20 E1 = *;
21 D1 = *;
22 D2 = *;
23 /COVARIANCES
24 /PRINT
25 FIT=ALL;
26 TABLE=EQUATION;
27 /TECHNICAL
28 ITERATION= 100;
29 EITERATION= 100;
30 AITERATION= 100;
31 HITERATION= 100;
32 /END

C)

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

EQS STANDARDIZED SOLUTION:

RESPONSE =V1  = 0.860*F1 + 0.510 E1
F1 = 0.917*F2 - 0.065*LTD + 0.393*W + 0.000 D1
F2 = -0.777*OD + 0.049*BD + 0.627 D2

EQS ONLY OUTPUTS STANDARDIZED SOLUTIONS.  IN ORDER TO COMPARE AMONG
STANDARD, SEQUENTIAL, AND PC REGRESSION RESULTS, EQS STANDARDIZED
REGRESSION COEFFICIENTS WERE TRANSFORMED TO UN-STANDARDIZED

VALUES

† 

.

AN UN-STANDARDIZED REGRESSION COEFFICIENT (b) EQUALED THE
STANDARDIZED REGRESSION COEFFICIENT (b’) MINUS THE AVERAGE VALUE OF
THE VARIABLE (AVE[X]) DIVIDED BY THE STANDARD DEVIATION OF THE VARIABLE
(SD[X]):

† 

b =
b '-AVE (X )

SD(X )
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
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YIELDING THE FOLLOWING EQS UN-STANDARDIZED SOLUTION

RESPONSE =V1  = 0.69*F1
F1 = 1.23*F2 - 0.08*LTD + 0.01*W
F2 = -0.20*OD + 0.01*BD


