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Abstract

We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal
communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four
sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18,
24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic
microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage
was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and
temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and
epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site,
decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites.
Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlo-
rophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites
but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fuco-
xanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that
the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable
over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns
between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the
bay, as might occur during Everglades restoration, can shift microalgal community structure, which may
subsequently alter food web support for upper trophic levels.

Introduction

Habitat management balances multiple ecological,
social, and economic objectives (Arthur et al.,
2004; Sklar et al., 2005) and often requires trade-
offs (Brodziak et al., 2004; Pejchar et al., 2005), as
management policies can benefit some community
components and simultaneously negatively impact
others. Understanding the links among ecosystem
components and interpreting community-level
responses to ecosystem changes can increase the

overall success of management strategies by
facilitating the prediction of indirect impacts of
land-use projects and increasing the potential for
positive community-level impacts.

Hydrological management in watersheds and
coastal marshes can alter the supply of terrestrially-
derived compounds, particularly nutrients such as
nitrogen (N) and phosphorus (P), to nearshore
communities (Valiela et al., 1997). In the context
of habitat management, nutrient limitation within
the primary producer community is often assumed
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to be uniform, but in coastal habitats, macro-
producers such as seagrasses and macroalgae
often show different responses to N and P
enrichment (Fong et al., 1993; Udy & Dennison,
1997; Ferdie & Fourqurean, 2004; Armitage et al.,
2005). Less is known about nutrient limitation
within epiphytic or benthic microalgal communi-
ties, where biomass or production of typically
diverse communities are usually represented by
whole community estimates (Sullivan & Currin,
2000). Nitrogen and phosphorus enrichment
has been associated with shifts towards cyano-
bacterial assemblages in benthic estuarine habitats
(Pinckney et al., 1995; Armitage & Fong, 2004),
particularly when diatoms are limited by silica
(Rocha et al., 2002) or grazing pressure (Cuker,
1983). Green algae (Chlorophyta) are often
palatable and limited by grazing but are also fast-
growing and may respond rapidly to increased
nutrient input (Valiela et al., 1997; Lotze et al.,
2000). Epiphytic and benthic microalgal commu-
nities have distinct compositions and patterns of
nutrient limitation may vary between these
assemblages. These communities often provide
support for higher trophic levels (Moncreiff &
Sullivan, 2001), and shifts in microalgal commu-
nity composition can have important implications
for food web dynamics (Armitage & Fong, 2004).

Implementation of the Comprehensive Ever-
glades Restoration Plan in south Florida might
change freshwater input and associated nutrient
supply to Florida Bay, which is directly connected
to the southern border of the Everglades. Previous
work in the bay and the Florida Keys has
demonstrated that increased nutrient input can
alter the relative composition of seagrass and
macroalgal assemblages, although the degree of
alteration depends on the nutrient availability
status of the area (Fourqurean et al., 1995; Ferdie&
Fourqurean, 2004; Armitage et al., 2005). The
objective of this study was to further evaluate how
increased nutrient supply might alter marine pri-
mary producer communities by focusing on
nutrient enrichment responses within the epiphytic
and benthic microalgal communities. We hypoth-
esized that nutrient enrichment would shift
microalgal community composition, increasing the
abundance of faster growing groups including
palatable green algae and less palatable
cyanobacteria.

Methods

To evaluate the epiphytic and benthic microalgal
responses to N and P enrichment over time within
Everglades National Park in Florida Bay, we used
a three-way ANOVA design, where the factors
were P addition, N addition, and sampling date. In
October 2002 we established four study sites (all
depths <2 m) as part of a long-term enrichment
study (Armitage et al., 2005). The two eastern sites
(Duck Key and Bob Allen Keys Long Term
Ecological Research (LTER) sites, Fig. 1) were
characterized by a sparse, short Thalassia testudi-
num Banks ex König canopy with some calcareous
green macroalgae, primarily Penicillus capitatus
Lamarck and P. lamourouxii Decaisne. These two
sites occurred in an area of severe P-limitation
(Fourqurean & Zieman, 2002; Armitage et al.,
2005). The two western sites (Nine Mile Bank,
Sprigger Bank LTER site) were located in a region
that may experience both N- and P-limitation but
varied in their vegetation characteristics. Nine
Mile Bank featured a dense, tall T. testudinum
canopy with few macroalgae. Sprigger Bank was
characterized by a dense and diverse macroalgal
community mixed with the seagrasses Syringodium
filiforme Kützing (manatee grass) and T. testudi-
num. At each site we established 24 0.25 m2 study
plots demarcated with a PVC frame secured to the
benthos at 1 m intervals.

We randomly assigned treatments [control
(C), nitrogen only (N), phosphorus only (P), both
nitrogen and phosphorus (NP)] to six plots per site
(at the Sprigger Bank LTER site, n=3 per treat-
ment due to the loss of 12 plots from erosion and
boat disturbance over the course of the study).
Bimonthly fertilizer applications began in October
2002. Nitrogen was added in the form of slow
release nitrogen fertilizer (Polyon�, Pursell Tech-
nologies Inc., 38-0-0) and phosphorus as granu-
lar phosphate rock (Multifos�, IMC Global,
Ca3(PO4)2, 18% P). Loading rates of 1.43 g N
m)2 day)1 and 0.18 g P m)2 day)1 (molar N:P
ratio 17.6:1) were selected based on potential
sewage loading rates (MCSM, 2001) and previous
studies in the region (Ferdie & Fourqurean, 2004;
Armitage et al., 2005). We sprinkled the fertilizer
evenly on the sediment surface and gently worked
it into the sediment by hand. Sediment in the
control plots was similarly disturbed but no
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fertilizer was added. Benthic fertilizer applications
ensured accessibility of nutrients to both above-
ground and benthic primary producers (Ferdie &
Fourqurean, 2004; Mutchler et al., 2004; Armitage
et al., 2005). The plots and experimental treat-
ments in this study are the same plots sampled for
a recent study (Armitage et al., 2005), but all
samples collected for this experiment are inde-
pendent of the previous study.

In February 2004, August 2004, and February
2005, we collected one T. testudinum short-shoot
from each plot and removed the epiphytes by
gently scraping the seagrass leaves with a razor
blade. At Sprigger Bank, T. testudinum was not
present in all plots. Leaf morphometrics were
measured to calculate two-sided leaf area. We
measured shoot density in each plot and calculated
leaf area index (LAI=cm2 seagrass leaf m)2 hab-
itat). We also collected a 2.5 cm diameter, 1 cm
deep core haphazardly located within each plot.
Due to logistical constraints, sediment cores were
collected only on the two 2004 sampling dates.
Epiphytes and sediments were freeze dried and
stored at )20� in the dark until further analysis.

We determined the relative abundance of major
phototrophic groups with high performance liquid
chromatography (HPLC), which measures the rel-
ative concentrations of taxa-specific indicator pig-
ments (chlorophyll a, chlorophyll b, fucoxanthin,
and zeaxanthin) (Pinckney et al., 1995). Pigments
were extracted from freeze-dried epiphytes and
sediments with 90% acetone for at least 12 h at
)20 �C. An ion-pairing solution (1.00 M ammo-
nium acetate) was added to the filtered extracts at a
ratio of 4 parts extract: 1 part ammonium acetate
just prior to injection. Extracts (250 ll) were in-
jected into a Hewlett Packard 1090 HPLC equip-
ped with a monomeric reverse-phase C18 column
(Rainin-Microsorb-MV, 100�4.6 mm, 3 lm) and
a polymeric reverse-phase C18 column (Vydac,
201TP, 250�4.6 mm, 5 lm) in series and a photo-
diode array detector set at 440 nm. Solvents and
flow rates followed Pinckney et al. (1999) and the
column temperature was 40 �C. Pigments were
identified based on retention times and compari-
sons with pure standards extracted from phyto-
plankton cultures in 90% acetone (chlorophyll a,
chlorophyll b) or 100% ethanol (fucoxanthin,

Figure 1. Map of Florida Bay and study sites. Sp=Sprigger Bank, 9M=Nine Mile Bank, BA=Bob Allen Keys, Du=Duck Key.

425



zeaxanthin) obtained from DHI Water and Envi-
ronment (Denmark). Epiphyte load is represented
as lg pigment cm)2 of seagrass leaf; benthic load is
lg pigment cm)2 of sediment. Microalgal biomass
is represented as the average pigment concentration
(mg) m)2 of habitat. Epiphytic biomass is (lg pig-
ment cm)2 seagrass leaf)�(LAI)/1000, and benthic
biomass is (lg pigment cm)2 sediment)�10.

In February 2005 we collected one additional
T. testudinum leaf from each plot, removed the
epiphytes, and preserved them in 6% Lugol’s
solution. We qualitatively verified composition of
the microalgal assemblages by examining the cells
at 100� under a light microscope and noting the
cell types present.

All data were tested for normality and vari-
ances for homoscedasticity using the Fmax test and
log transformed if necessary to conform to the
assumptions of ANOVA. We performed a three-
way ANOVA with Type III Sums of Squares for
unequal sample size within each site separately for
epiphyte and benthic pigment concentrations. The
three fixed factors were date (3 dates for epiphytes,
2 dates for benthic pigments), P addition (±P), and
N addition (±N). Dependent variables were epi-
phyte loads, represented by lg chlorophyll a,
fucoxanthin, zeaxanthin, and chlorophyll b cm)2

of seagrass leaf or cm)2 of sediment. Thalassia
testudinum was not present in all plots at Sprigger
Bank (n £ 2), resulting in insufficient replication
for ANOVA, and so means and standard errors
are reported for epiphytic loads at that site.

Results

Qualitative microscopic examination indicated
that the most common components of the epi-
phytic microalgal community were diatoms and
calcareous red algae. Hence, we interpreted fuco-
xanthin concentration to primarily represent dia-
tom abundance, though a few dinoflagellate cysts
were also noted at most sites (excepting Nine Mile
Bank). Diatom species lists for this region are
presented in Frankovich et al. (2006). At Sprigger
Bank, part of the fucoxanthin signal came from
brown algae (e.g., Cladosiphon occidentalis Kylin),
particularly in the February samplings. The zea-
xanthin signal represented a red algal/cyanobac-
terial complex. Most of the red algae were

encrusting calcareous forms (e.g., Melobesia
membranacea (Esper) Lamouroux, Hydrolithon
farinosum (J.V. Lamouroux) Penrose & Y.M.
Chamberlain), though uncalcified forms (e.g.,
Polysiphonia binneyi Harvey, Ceramium brevizon-
atum var. caraibicum H.E. Petersen & Børgesen in
Børgesen) were also present. The cyanobacteria
were primarily Lyngbya spp. and unidentified
sheathed filaments. The chlorophyll b signal
represented green microalgae (e.g., Ulvella lens
P. Crouan & H. Crouan).

Comparisons of epiphytic and benthic micro-
algal biomass (as represented by mg chlorophyll
a m)2 habitat) in control plots suggested that
benthic microalgal biomass was 6–10 times higher
than epiphytic biomass at all sites (Fig. 2). Epi-
phytic biomass (mg m)2 habitat) was higher at
Nine Mile and Sprigger Banks than at the other
sites (Fig. 2a). Benthic biomass was lowest at
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Figure 2. Microalgal biomass, represented by chlorophyll a

concentrations in control (unenriched) plots averaged over all

sampling periods in the (a) epiphytic and (b) benthic commu-

nities. In all figures, bars represent standard error.
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Duck and similar among the other three sites
(Fig. 2b).

At Duck Key, each pigment responded differ-
ently to date and nutrient addition treatments. In
the epiphyte community, a significant interaction
between date and P addition for chlorophyll a
(df=2, F=16.336, p<0.001) was caused by a large
increase in response to P addition in February
2004 but not on any other date (Fig. 3a). A sig-
nificant P�N interaction (df=1, F=8.412,
p=0.005) was driven by consistently lower chlo-

rophyll a concentrations in plots that received
both N and P compared to P only treatments.
A significant interaction between date and P
addition for epiphytic fucoxanthin (df=2,
F=14.307, p<0.001) was driven by a P-induced
increase in February 2004, a P-induced decrease in
August 2004, and no nutrient effects in February
2005 (Fig. 3b). N addition did not affect epiphytic
fucoxanthin. A significant interaction between
date and P addition for epiphytic zeaxanthin
(df=2, F=15.860, p<0.001) was caused by a
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Figure 3. Responses of epiphytic (lg cm)2 seagrass leaf) and benthic (lg cm)2 sediment) pigments to nitrogen and phosphorus

addition at Duck Key. w indicates no data collected and / signifies that no pigment was detected. Significant p-values are depicted.
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larger response to P addition in the February
samplings than in August (Fig. 3c). Epiphytic
zeaxanthin was not affected by N addition. A
significant date*P interaction for epiphytic chlo-
rophyll b (df=2, F=14.100, p<0.001) was driven
by the largest response to P addition occurring
in February 2004 and the smallest response in
February 2005 (Fig. 3d). A significant interaction
between N and P addition (df=1, F=4.532,
p=0.037) was caused by lower chlorophyll b
concentration in NP than in P only treatments.

The Duck Key benthic microalgal community
responded differently to nutrient addition than the
epiphyte assemblage. Both P (df=1, F=17.564,
p<0.001) and N (df=1, F=9.921, p=0.003) had
significant and additive effects on benthic chloro-
phyll a concentration, with no date effect and no
interactions between factors (Fig. 3e). Fucoxan-
thin was significantly affected by all three factors
with no interactions (Date df=1, F=5.449,
p=0.025; P df=1, F=11.007, p=0.002; N df=1,
F=8.306, p=0.006). Benthic fucoxanthin was
higher in August than in February and was in-
creased by both N and P addition (Fig. 3f).
Zeaxanthin increased in response to P addition
(df=1, F=36.509, p<0.001) but was not affected
by date or N addition, with no interactions be-
tween factors (Fig. 3g). Likewise, chlorophyll b
increased in response to P addition (df=1,
F=6.589, p=0.014) but was not affected by date
or N addition, with no interactions between fac-
tors (Fig. 3h).

The Bob Allen epiphyte assemblage was vari-
able over time and generally responded to P but
not N addition. Epiphytic chlorophyll a was
significantly affected by date (df=2, F=5.058,
p=0.009) and P addition (df=1, F=25.779,
p<0.001) but was not affected by N addition, with
no interactions between factors. Chlorophyll a was
lower in February 2004 than on the other dates
and decreased in response to P addition on all
dates (Fig. 4a). Epiphytic fucoxanthin was signif-
icantly affected by date (df=2, F=17.516,
p<0.001) and P addition (df=1, F=27.746,
p<0.001) but was not affected by N addition, with
no interactions between factors. Fucoxanthin was
lower in February 2004 than on the other dates
and decreased in response to P addition on all
dates (Fig. 4b). Zeaxanthin significantly increased
in response to P addition (df=1, F=5.533,

p=0.022) but was not affected by date or N
addition, with no interactions between factors
(Fig. 4c). A significant date*P interaction for epi-
phytic chlorophyll b (df=2, F=6.821, p=0.002)
was driven by a larger increase in response to P in
August than in February (Fig. 4d). Chlorophyll b
was not affected by N addition.

The Bob Allen benthic microalgal community
exhibited complex responses to date and nutrient
addition treatments. A significant date*N inter-
action for benthic chlorophyll a (df=1, F=5.463,
p=0.025) was caused by a stronger response to N
addition in August than in February (Fig. 4e). A
significant P*N interaction (df=1, F=6.408,
p=0.015) was driven by an increase in chlorophyll
a in response to P addition only when N was also
added. Benthic fucoxanthin was significantly
higher in August than in February (df=1,
F=21.022, p<0.001). A significant P*N interac-
tion (df=1, F=4.842, p=0.034) was driven by an
increase in fucoxanthin in response to P addition
only when N was also added (Fig. 4f). Benthic
zeaxanthin increased in response to N addition
(df=1, F=6.197, p=0.017). A significant date*P
interaction (df=1, F=4.293, p=0.045) was driven
by a stronger zeaxanthin response to P addition in
August than in February (Fig. 4g). Benthic chlo-
rophyll b concentration was not significantly af-
fected by date or nutrient treatment (Fig. 4h).

The benthic and epiphytic communities at Nine
Mile Bank were variable over time but largely
unaffected by nutrient addition treatments
(Fig. 5). The exception was epiphytic zeaxanthin,
where a significant date*P interaction (df=2,
F=3.250, p=0.046) was driven by a strong
increase in response to P in February 2005,
a weak P response in February 2004, and no
P response in August 2004 (Fig. 5c). Date
significantly affected epiphytic chlorophyll a
(df=2, F=20.274, p<0.001), fucoxanthin (df=2,
F=22.449, p<0.001), and chlorophyll b (df=2,
F=58.830, p<0.001). The concentrations of each
of these pigments were higher in August than in
the February samplings (Fig. 5a, b, d). Date
significantly affected benthic chlorophyll a (df=1,
F=27.425, p<0.001) and benthic fucoxanthin
(df=1, F=23.726, p<0.001). The concentrations
of both of these pigments were higher in August
than in February but were not significantly af-
fected by nutrient treatment (Fig. 5e, f). Benthic
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zeaxanthin and chlorophyll b were unaffected by
date or nutrient treatments (Fig. 5g, h).

The benthic and epiphytic communities at
Sprigger Bank were generally unaffected by
nutrient treatments. No statistical analyses were
performed for the epiphyte community at this site
due to insufficient replication (n £ 2), but mean
estimates of chlorophyll a, fucoxanthin, and
zeaxanthin were higher on the February dates
than in August and did not appear to be affected

by nutrient addition (Fig. 6a–c). Mean chloro-
phyll b was higher in August than in February
but did not appear to be affected by N or P
addition (Fig. 6d). A significant date*P interac-
tion for benthic zeaxanthin (df=1, F=4.758,
p=0.044) was driven by a P-induced decrease in
February and no P effect in August (Fig. 6g).
None of the other benthic pigments were signifi-
cantly affected by date or nutrient treatments
(Fig. 6e, f, h).
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Discussion

Spatial, temporal, and taxa-specific variability
in microalgal responses to nutrient enrichment
demonstrated that the primary producer compo-
nents of the Florida Bay ecosystem do not respond
uniformly to changes in nutrient input. In general,
nutrient responses were stronger in the eastern
bay, corresponding with previous studies docu-

menting severe nutrient limitation in seagrass
(Armitage et al., 2005) and phytoplankton (Four-
qurean et al., 1993) in that region. However, each
microalgal group displayed a unique spatial pat-
tern in response to N and P enrichment. Epiphytic
chlorophyll a and fucoxanthin responded to P
addition differently at each site, with a P-induced
increase at one site, a decrease at another site, and
no P response at two western sites. In contrast,
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epiphytic zeaxanthin and chlorophyll b were
consistently higher in P addition treatments in
the eastern bay. In the benthos, both N and P
impacted chlorophyll a, fucoxanthin, and zeaxan-
thin concentrations, though nutrient addition
effects were generally complex. These taxa-specific
patterns are consistent with previous work docu-
menting within-community variability in nutrient
limitation patterns in a variety of habitats,
including salt marshes (Sundareshwar et al., 2003),

freshwater wetlands (Havens et al., 1999), and
marine seagrass beds (Ferdie & Fourqurean,
2004).

Nutrient limitation patterns were markedly
different between the epiphytic and benthic
communities, especially in the two eastern bay sites
(Duck Key, Bob Allen Keys). In particular, N
addition had more positive effects on benthic pig-
ments than on epiphytic pigments at both sites.
Positive effects of N addition were detected for
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benthic chlorophyll a and fucoxanthin at both sites
and for benthic zeaxanthin at Bob Allen Keys. In
contrast, N addition had negative effects on epi-
phytic chlorophyll a and chlorophyll b at Duck
Key and no effects on epiphytic pigments at Bob
Allen Keys. These patterns suggest that N limita-
tion may be stronger in the benthos than in the
epiphytes in the eastern bay. Thalassia testudinum
tissue N content is generally high in Florida Bay
(Fourqurean & Zieman, 2002), suggesting high N
availability in this habitat. N-limitation in an
N-replete environment may occur through micro-
bial transformations such as denitrification that
increase the loss of N (Ferdie & Fourqurean,
2004). In addition, P has a high affinity for
carbonate sediments such as those in our study (de
Kanel & Morse, 1978), but the rhizosphere of
seagrass beds can actively dissolve carbonate sed-
iments (Burdige & Zimmerman, 2002) and make P
more available for uptake (Jensen et al., 1998).
Such processes may increase the bioavailability of
P relative to N in the sediments and explain why
there was a tendency toward more N-limitation in
the benthic than in the epiphytic microalgal com-
munity. Alternatively, species-specific patterns of
nutrient limitation have been documented within
microalgal communities in freshwater and marine
systems (Tilman, 1977; Coleman & Burkholder,
1994). Little is known about how similar the epi-
phytic and benthic microalgal communities are in
Florida Bay, but the contrasting nutrient limita-
tion patterns that we observed suggest that they
are taxonomically distinct from each other. Cor-
alline algae in particular were unlikely to be pres-
ent in the benthic algal community, as they require
firmer substrate for growth (T.A. Frankovich,
personal observation).

Taxonomic groups within microalgal assem-
blages have shown different nutrient limitation
patterns in a wide range of habitats including
coral reef turf communities (Miller et al., 1999),
marine microalgal mats (Pinckney et al., 1995),
and planktonic assemblages (Kononen, 2001).
Nitrogen-fixing cyanobacteria are particularly able
to increase in response to P addition in both epi-
phytic (Neckles et al., 1994) and benthic assem-
blages (Pinckney et al., 1995; Armitage & Fong,
2004). Our study generally concurred with these
previous studies in that cyanobacteria were part of
the zeaxanthin signature that increased in P addi-

tion treatments, particularly in the eastern bay.
However, our microscopic examinations of the
epiphytic assemblages suggest that coralline red
algae were a major component of the epiphytic
zeaxanthin signal. The relative dominance model
(Littler & Littler, 1984) predicts that crustose
coralline algae will dominate in high nutrient, high
herbivory conditions. There is some evidence for
this pattern on coral reefs (Smith et al., 2001), but
little is known about epiphytic coralline algal
responses to nutrient enrichment. The strong
zeaxanthin responses to P enrichment that we
observed suggest an increase in epiphytic coralline
reds in enriched conditions, as predicted by the
relative dominance model. Because the zeaxanthin
signal represented a cyanobacterial–red algal
complex and zeaxanthin is a relatively minor pig-
ment in red algae relative to water soluble pig-
ments such as phycoerythrin (van den Hoek et al.,
1995) that were not detected with our HPLC
protocol, further microscopic examination and cell
enumeration is necessary to document the extent
of independent cyanobacterial and coralline red
algal responses to N and P enrichment.

Blooms of green macroalgae are often associ-
ated with N enrichment in marine habitats (Valiela
et al., 1997; Kamer et al., 2001). In contrast, we
detected little chlorophyll b response to N addi-
tion, but the strong P-induced increases we ob-
served are consistent with the P-limited nature of
the benthic community in eastern Florida Bay
(Armitage et al., 2005). Despite substantial in-
creases in green algal load following P addition,
the concentration of chlorophyll b was relatively
low, even in enriched treatments, suggesting that
the contribution of green algae to the total epi-
phytic biomass was small. Green algae are often
highly palatable and recruitment and growth may
be controlled by grazers (Gacia et al., 1999; Lotze
et al., 2000). Grazer density was higher in P-
enriched treatments in another study in Florida
Bay (Gil et al., 2006), suggesting that grazers could
have potentially limited green algal responses to
the nutrient treatments.

We did not detect consistent responses of dia-
toms as a group to nutrient enrichment. In fact,
the site with the strongest fucoxanthin response
to nutrient treatments, Bob Allen Keys, exhibited
a decrease following P addition. Increased T.
testudinum productivity and corresponding re-
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duced leaf turnover period or high grazer abun-
dance at that sitemayexplain thispattern,whichhas
been previously observed in this region (Ferdie &
Fourqurean, 2004; Armitage et al., 2005). In
addition, diatom responses to increased nutrients
can be variable. In temperate benthic microalgal
communities, nutrient addition can stimulate
diatom growth (Sundbäck & Snoeijs, 1991), though
that response may vary with sediment type
(Armitage&Fong,2004).Nutrientsmaycauseshifts
within diatom guilds, altering species composi-
tion (Sundbäck & Snoeijs, 1991; Coleman &
Burkholder, 1994) and masking group-level
responses to enrichment. Alternatively, intense
grazing pressure in enriched treatments, as with
green algae, may limit epiphytic and benthic dia-
tom responses to nutrients (Cuker, 1983; Neckles
et al., 1994).

The shifts in epiphytic and benthic community
composition that we observed in P-enriched
treatments in the eastern bay may alter support for
upper trophic levels in Florida Bay. Green algae,
which are generally palatable (Gacia et al., 1999;
Lotze et al., 2000), increased in P addition treat-
ments in the eastern bay, but our microscopic
examinations of the epiphytic cells suggest that
green algae were always rare relative to coralline
red algae, diatoms, and cyanobacterial filaments.
Fucoxanthin was abundant relative to the
other pigments we measured, and diatoms are an
important food source for epiphyte grazers
(Sullivan & Currin, 2000), but the P-induced
increase in coralline algae and cyanobacteria may
have decreased the accessibility of diatoms to
grazers by creating a more complex algal matrix
with increased resistance to herbivory (Klumpp
et al., 1992; Geddes & Trexler, 2003).

Our estimates of microalgal biomass (mg
chlorophyll a m)2 habitat) suggest that benthic
microalgal productivity may be higher than
epiphytic production in Florida Bay. We did not
directly test extraction efficiencies, and the use of
acetone to extract pigments from carbonate
sediments may underestimate benthic microalgal
biomass (Louda et al., 2000). In addition, water-
soluble pigments such as phycoerythrin that were
not detected with our HPLC protocol are more
abundant in red algae than chlorophyll a (van den
Hoek et al., 1995), suggesting that we underesti-
mated the biomass of the epiphytic microalgal

community as well. Although our estimation of
the difference between benthic and epiphytic pro-
ductivity is not an absolute value, few comparisons
between epiphytic and benthic productivity within
habitats exist in subtropical estuaries. One notable
exception found that epiphytic production was
about three times higher than benthic prod-
uction in Halodule wrightii Ascherson beds in
the nutrient-enriched northern Gulf of Mexico
(Moncreiff et al., 1992), which contrasts with the
microalgal biomass patterns we observed in oli-
gotrophic Florida Bay.

The complex patterns of nutrient limitation
within and between the epiphytic and benthic
microalgal communities illustrate the importance
of using experimental manipulations to aid in the
prediction of ecosystem responses to alterations.
This study contributes to a growing body of
work in the region (Ferdie & Fourqurean, 2004;
Armitage et al., 2005; Gil et al., 2006) revealing
that the potential impacts of nutrient enrichment
are not uniform among closely associated primary
producers. Varying nutrient responses within the
primary producer assemblage in Florida Bay sug-
gest that increased freshwater flow and associated
nutrient input during Everglades restoration ef-
forts may cause shifts in microalgal community
composition and cascade up to higher trophic
levels by modifying food web support (Sullivan &
Currin, 2000; Armitage & Fong, 2004). Consider-
ation of strategies that will minimize nutrient input
during restoration will lessen the indirect impacts
of Everglades management on the Florida Bay
faunal community.

Acknowledgements

This research was funded by a grant from the
Everglades National Park (ENP) under cooperative
agreement 1443CA528001022 and by the Florida
Coastal Everglades Long Term Ecological Research
Program funded by the U.S. National Science
Foundation (DEB-9910514). Doug Morrison and
Bill Perry facilitated permit issuance and use of
ENP facilities. We thank Kelsey Downum and
Adam Edwards for use of the HPLC apparatus
and valuable technical advice. Pursell Technolo-
gies Inc. and IMC Global donated the nitrogen
and phosphorus fertilizers, respectively, for this

433



study. We are indebted to the many people who
helped in the field and laboratory and to Evelyn
Gaiser and Ania Wachnicka for assisting with
algal identification. This is contribution #309 of
the Southeast Environmental Research Center at
Florida International University.

References

Armitage, A. R. & P. Fong, 2004. Upward cascading effects of

nutrients: shifts in a benthic microalgal community and a

negative herbivore response. Oecologia 139: 560–567.

Armitage, A. R., T. A. Frankovich, K. L. Heck Jr. & J. W.

Fourqurean, 2005. Experimental nutrient enrichment causes

complex changes in seagrass, microalgae, and macroalgae

community structure in Florida Bay. Estuaries 28: 422–434.

Arthur, J. L., J. D. Camm, R. G. Haight, C. A. Montgomery &

S. Polasky, 2004. Weighing conservation objectives: maxi-

mum expected coverage versus endangered species protec-

tion. Ecological Applications 14: 1936–1945.

Brodziak, J. K. T., P. M. Mace, W. J. Overholtz & P. J. Rago,

2004. Ecosystem trade-offs in managing New England fish-

eries. Bulletin of Marine Science 74: 529–548.

Burdige, D. J. & R. C. Zimmerman, 2002. Impact of sea grass

density on carbonate dissolution in Bahamian sediments.

Limnology and Oceanography 47: 1751–1763.

Coleman, V. L. & J. M. Burkholder, 1994. Community struc-

ture and productivity of epiphytic microalgae on eelgrass

(Zostera marina L.) under water-column nitrate enrichment.

Journal of Experimental Marine Biology and Ecology 179:

29–48.

Cuker, B. E., 1983. Grazing and nutrient interactions in con-

trolling the activity and composition of the epilithic algal

community of an arctic lake. Limnology and Oceanography

28: 133–141.

de Kanel, J. & J. W. Morse, 1978. The chemistry of ortho-

phosphate uptake from seawater on to calcite and aragonite.

Geochimica et Cosmochimica Acta 42: 1335–1340.

Ferdie, M. & J. W. Fourqurean, 2004. Responses of seagrass

communities to fertilization along a gradient of relative

availability of nitrogen and phosphorus in a carbonate

environment. Limnology and Oceanography 49: 2082–2094.

Fong, P., R. M. Donohoe & J. B. Zedler, 1993. Competition

with macroalgae and benthic cyanobacterial mats limits

phytoplankton abundance in experimental microcosms.

Marine Ecology Progress Series 100: 97–102.

Fourqurean, J. W., R. D. Jones & J. C. Zieman, 1993. Processes

influencing water column nutrient characteristics and phos-

phorus limitation of phytoplankton biomass in Florida Bay,

FL, USA: inferences from spatial distributions. Estuarine,

Coastal and Shelf Science 36: 295–314.

Fourqurean, J. W., G. V. N. Powell, W. J. Kenworthy & J. C.

Zieman, 1995. The effects of long-term manipulation of

nutrient supply on competition between the seagrasses

Thalassia testudinum and Halodule wrightii in Florida Bay.

Oikos 72: 349–358.

Fourqurean, J. W. & J. C. Zieman, 2002. Nutrient content of

the seagrass Thalassia testudinum reveals regional patterns of

relative availability of nitrogen and phosphorus in the

Florida Keys USA. Biogeochemistry 61: 229–245.

Frankovich, T. A., E. E. Gaiser, J. C. Zieman & A. H. Wachni-

cka, 2006. Spatial and temporal distributions of epiphytic

diatoms growing on Thalassia testudinum Banks ex König:

relationships to water quality. Hydrobiologia 569: 259–271.

Gacia, E., M. M. Littler & D. S. Littler, 1999. An experimental

test of the capacity of food web interactions (fish–epiphytes–

seagrasses) to offset the negative consequences of eutrophi-

cation on seagrass communities. Estuarine, Coastal and

Shelf Science 48: 757–766.

Geddes, P. & J. C. Trexler, 2003. Uncoupling of omnivore-

mediated positive and negative effects on periphyton mats.

Oecologia 136: 585–595.

Gil, M., A. R. Armitage & J. W. Fourqurean, 2006. Nutrients

impacts on epifaunal diversity and species composition in a

subtropical seagrass beds. Hydrobiologia 569: 437–447.

Havens, K. E., T. L. East, A. J. Rodusky & B. Sharfstein, 1999.

Littoral periphyton responses to nitrogen and phosphorus:

an experimental study in a subtropical lake. Aquatic Botany

63: 267–290.

Jensen, H. S., K. J. McGlathery, R. Marino & R. W. Howarth,

1998. Forms and availability of sediment phosphorus in

carbonate sand of Bermuda seagrass beds. Limnology and

Oceanography 43: 799–810.

Kamer, K., K. A. Boyle & P. Fong, 2001. Macroalgal bloom

dynamics in a highly eutrophic southern California estuary.

Estuaries 24: 623–635.

Klumpp, D. W., J. S. Salita-Espinosa & M. D. Fortes, 1992.

The role of epiphytic periphyton and macroinvertebrate

grazers in the trophic flux of a tropical seagrass community.

Aquatic Botany 43: 327–349.

Kononen, K., 2001. Eutrophication, harmful algal blooms and

species diversity in phytoplankton communities: examples

from the Baltic Sea. Ambio 30: 184–189.

Littler, M. M. & D. S. Littler, 1984. Models of tropical reef

biogenesis: the contribution of algae. Progress in Phycolog-

ical Research 3: 323–364.

Lotze, H. K., B. Worm & U. Sommer, 2000. Propagule banks,

herbivory and nutrient supply control population develop-

ment and dominance patterns in macroalgal blooms. Oikos

89: 46–58.

Louda, J. W., J. W. Loitz, D. T. Rudnick & E. W. Baker, 2000.

Early diagenetic alteration of chlorophyll-a and bacterio-

chlorophyll-a in a contemporaneous marl ecosystem; Florida

Bay. Organic Geochemistry 31: 1561–1580.

MCSM, 2001. Monroe County Stormwater Management

Master Plan; Volume 1; Section 2.3; Pollution loads targets

and analysis.

Miller, M. W., M. E. Hay, S. L. Miller, D. Malone, E. E. Sotka

& A. M. Szmant, 1999. Effects of nutrients versus herbivores

on reef algae: a new method for manipulating nutrients on

coral reefs. Limnology and Oceanography 44: 1847–1861.

Moncreiff, C. A. & M. J. Sullivan, 2001. Trophic importance of

epiphytic algae in subtropical seagrass beds: evidence from

multiple stable isotope analyses. Marine Ecology Progress

Series : 93–106.

434



Moncreiff, C. A., M. J. Sullivan & A. E. Daehnick, 1992. Pri-

mary production dynamics in seagrass beds of Mississippi

Sound: the contributions of seagrass, epiphytic algae, sand

microflora, and phytoplankton. Marine Ecology Progress

Series 87: 161–171.

Mutchler, T., M. J. Sullivan & B. Fry, 2004. Potential of 14N

isotope enrichment to resolve ambiguities in coastal trophic

relationships. Marine Ecology Progress Series 266: 27–33.

Neckles, H. A., E. T. Koepfler, L. W. Haas, R. L. Wetzel &

R. J. Orth, 1994. Dynamics of epiphytic photoautotrophs

and heterotrophs in Zostera marina (eelgrass) microcosms:

responses to nutrient enrichment and grazing. Estuaries 17:

597–605.

Pejchar, L., K. D. Holl & J. L. Lockwood, 2005. Hawaiian

honeycreeper home range size varies with habitat: implica-

tions for native Acacia koa forestry. Ecological Applications

15: 1053–1061.

Pinckney, J., H. W. Paerl & M. Fitzpatrick, 1995. Impacts of

seasonality and nutrients on microbial mat community

structure and function. Marine Ecology Progress Series 123:

207–216.

Pinckney, J. L., H. W. Paerl & M. B. Harrington, 1999. Re-

sponses of the phytoplankton community growth rate to

nutrient pulses in variable estuarine environments. Journal

of Phycology 35: 1455–1463.

Rocha, C., H. Galvao & A. Barbosa, 2002. Role of transient

silicon limitation in the development of cyanobacteria

blooms in the Guadiana estuary, south-western Iberia.

Marine Ecology Progress Series 228: 35–45.

Sklar, F. H., M. J. Chimney, S. Newman, P. McCormick,

D. Gawlik, S. L. Miao, C. McVoy, W. Said, J. Newman,

C. Coronado, G. Crozier, M. Korvela & K. Rutchey, 2005.

The ecological-societal underpinnings of Everglades resto-

ration. Frontiers in Ecology and the Environment 3: 161–

169.

Smith, J. E., C. M. Smith & C. L. Hunter, 2001. An experi-

mental analysis of the effects of herbivory and nutrient

enrichment on benthic community dynamics on a Hawaiian

reef. Coral Reefs 19: 332–342.

Sullivan, M. J. & C. A. Currin, 2000. Community structure and

functional dynamics of benthic microalgae in salt marshes.

In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and

Controversies in Tidal Marsh Ecology. Kluwer Academic

Publishers, Dordrecht, The Netherlands: 81–106.

Sundareshwar, P. V., J. T. Morris, E. K. Koepfler &

B. Fornwalt, 2003. Phosphorus limitation of coastal eco-

system processes. Science 299: 563–565.
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