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INTRODUCTION

Throughout the world, the loads of sewage dis-
charged into marine waters have steadily increased,
matching the growth of coastal urbanisation. The

impacts of sewage disposal on benthic biota have
been examined and include reduced species richness
and abundance (Brown et al. 1990, Hardy et al. 1993,
Munda 1993, Kelly 1995), with the nutrient enrich-
ment effect of sewage pollution often implicated as a
major factor. In many cases however, it can be diffi-
cult to separate the impacts of sewage on marine
biota from natural variability in species diversity
and abundance (Carballo et al. 1996, Roberts 1996)
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ABSTRACT: We examined whether δ15N levels of marine biota with different nutrient uptake character-
istics can be used to trace the dispersal of sewage effluent in highly mixed, nitrogen-limited waters, and
whether they can reveal the dispersal of sewage over different timescales. We hypothesised that macro-
algal species with fast uptake rates would display a spatial pattern in δ15N levels reflecting recent sewage
dispersal while those with slower rates would provide a signal integrated over a longer time period. Filter-
feeding sponges and ascidians were also sampled to see if they reflected patterns in the dispersal of sewage
particulate organic matter (POM). A laboratory experiment was performed to test whether the δ15N level
of 3 macroalgal species (Ulva australis, Vidalia sp. and Ecklonia radiata) and 2 filter-feeding species
(Clathria sp. and Pyura australis) was altered after cultivation in sewage nitrogen. We then sampled each
organism along transects radiating away from the outlet of a wastewater treatment plant north of Perth,
Western Australia, to determine spatial patterns in δ15N. U. australis and Vidalia sp. developed higher iso-
topic signatures when exposed to low concentrations of sewage nitrogen (1:500 dilution in seawater) for 7 d
in the laboratory. U. australis and Vidalia sp. showed an increase of 1.7 and 1.4‰ in treatments respectively.
In the field, macroalgae sampled north and south of the sewage outlet generally had higher δ15N levels than
those sampled west of the outlet and at the reference site, and algae within 500 m of the outfall tended to
have lower values than at 1000 m or more from the outfall. These trends are consistent with our current
knowledge of plume dynamics: a predominantly northerly drift of effluent as a buoyant plume that tends
not to be fully mixed in the water column for the first 500 m. The results confirmed that the δ15N signature
of macroalgae could be used to trace sewage disposed in well-mixed waters. The strength of the spatial
trends varied between algae, with E. radiata, the species with the lowest nutrient uptake rates and affin-
ity, having the least spatial variability. We interpret this as reflecting a wider regional dispersal of sewage
in the longer time frame, but a strong northerly drift in the short term, which was reflected in the δ15N values
of the species with the fastest nitrogen uptake rates. The results were consistent with our hypothesis and
are suggestive of a relationship between algal functional form and isotopic signatures that can be applied
to determine the dispersal of sewage over different timescales. The δ15N values of benthic filter feeders did
not provide strong evidence to suggest that they can be used to represent the dispersal of sewage POM, but
trends found in the field experiment for Clathria sp. warrant further investigation.
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making it difficult to perform classic control-impact
studies.

Traditional methods for monitoring sewage dispersal
around sewage outlets often use spot sampling of phys-
iochemical tracers, such as nutrients and salinity, or
phytoplankton biomass. These methods are laborious,
time-consuming and costly, and often only provide a
generalised pattern of effluent dispersal. In well-mixed
environments the signal of these tracers is rapidly lost as
the pollutant is diluted and, at best, they provide only an
instantaneous view of sewage dispersal. Short pulses of
sewage pollution in areas that would not receive sewage
under ‘normal’ circumstances are likely to be missed,
although these events may be ecologically significant.
The need exists therefore for a technique which can pro-
vide an integrated picture of effluent plume dispersal
over specific time-periods and which is sensitive enough
to detect subtle differences in nutrient concentrations.
Recent work indicates that stable isotopic signatures
of aquatic macrophytes may indicate the dispersal of
sewage nitrogen (Handley & Raven 1992, Udy & Den-
nison 1997, McClelland & Valiela 1998).

Often the marine environment can be nitrogen-
limited, and algae will assimilate nitrogen additions from
alternative sources, such as sewage effluent (Dhargalkar
1986, Lyngby & Mortensen 1994). As sewage generally
has a significantly higher δ15N value than seawater
(Owens 1987, Aravena et al. 1993, Sigman et al. 1997),
the natural abundance of stable isotopes can confirm the
source of nutrients that primary producers are assimi-
lating. Udy & Dennison (1997), McClelland & Valiela
(1998) and Fry et al. (2000), have used the δ15N levels of
seagrasses and mangroves to infer the dispersal of
sewage effluent. Recent studies have used the δ15N
levels of marine macroalgae to demonstrate the contri-
bution of anthropogenic-derived N to macroalgal blooms
at sites in the vicinity of a fish-processing waste outlet
(Monteiro et al. 1997, Anderson et al. 1999). While these
studies did not provide a detailed, time-integrated pic-
ture of effluent dispersal, they support the notion that
macroalgal δ15N levels could be used for this purpose.
Tucker et al. (1999) also used stable nitrogen isotopes
of macroalgae to demonstrate widespread evidence of
sewage-derived materials in Massachusetts Bay, USA.
We hypothesised that macroalgae would be potentially
more useful in tracing sewage dispersal than either sea-
grasses or mangroves for 2 reasons. First, their wide-
spread dispersal and reliance on water column dissolved
inorganic nitrogen (DIN) makes them strong candidates;
second, most macroalgal assemblages will include spe-
cies with a wide range of nutrient uptake characteristics.
We hypothesised that this facet could be used to reveal
not only the dispersal of sewage effluent, but also pro-
vide information on the timescale over which a site was
affected by sewage.

Macroalgae depend predominantly on DIN from the
water column to meet their nitrogen requirements
(Wallentinus 1984). Littler (1980) classified the macro-
algae into functional groups according to morphology,
and Wallentinus (1984) showed that their nutrient
uptake characteristics are related to these functional
groupings. Foliose and filamentous species have high
nutrient uptake rates, and so on exposure to a pulse of
nitrogen they should have the ability to assimilate a
relatively large amount of that source and for this to be
reflected in their isotopic signature. In comparison,
species with slow uptake rates should only exhibit a
shift in their isotope ratio after exposure to an alterna-
tive source of nitrogen for a longer period of time. Like-
wise, filter-feeding organisms such as sponges and
ascidians that assimilate particulate organic matter
(POM) from the water offer the potential to trace
the dispersal of sewage-derived POM, as opposed to
assuming it has the same dispersal as sewage DIN.

The objectives of this study were to test whether the
δ15N levels of marine macroalgae and filter-feeders can
be used to determine the spatial and temporal patterns
of sewage effluent dispersal around a sewage outlet.
To do this, 2 procedures were used. First, a laboratory
experiment was used to test the capacity of a range of
algae and filter-feeders to develop a δ15N signal when
exposed to sewage effluent. The algae included spe-
cies with different nitrogen uptake rates. We then sam-
pled the same organisms in situ at sites radiating away
from a sewage outlet to see whether they displayed
spatial patterns in δ15N values which corresponded to
the known spatial and temporal dispersal pattern of
the effluent plume. 

MATERIALS AND METHODS

Study area. The study was conducted off Ocean
Reef, Western Australia (31° 52’ S, 115° 44’ E: Fig. 1), in
the vicinity of the sewage outlet for the Beenyup
Wastewater Treatment Plant (WWTP). The outlet lies
1.8 km offshore in a shallow (<15 m) body of water,
semi-enclosed by a high-relief reef system running
parallel to the coast, which has helped form a coastal
lagoon. Approximately 140 ml d–1 (total N of approxi-
mately 32 mg l–1) of secondary treated sewage is dis-
charged into the Ocean Reef lagoon (Lord & Hillman
1995). Oceanic swells from the west and southwest
ensure that the lagoon is well mixed (Searle & Seme-
niuk 1985).

The lagoon contains patchy high- and low-relief
reefs with diverse algal assemblages (Phillips et al.
1997, Kendrick et al. 1999). Ecklonia radiata and
Sargassum sp., form canopies underlain by a highly
diverse understorey. Sponge and ascidian assemblages
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dominate the reef in areas where insufficient light pre-
cludes algal growth.

Test species. Three morphologically distinct macro-
algae were selected for their expected differences in
nutrient uptake rates (Littler 1980, Wallentinus 1984).
Ulva australis Areschoug (Sonder), a foliose chloro-
phyte, has a high nutrient-uptake capacity. Vidalia sp.,
a corticated foliose rhodophyte, was chosen to repre-
sent species with a moderate uptake rate, and the
leathery kelp Ecklonia radiata (C. Agardh) was chosen
to represent macroalgae with a low nutrient uptake
rate (Wallentinus 1984). Two filter-feeders were sam-
pled to test whether distinct patterns in POM dispersal
could be detected. These were Clathria sp. (Porifera),
and Pyura australis (Quoy Gainard) (Ascidia). 

Laboratory experiment. A laboratory experiment
was performed to confirm that the test organisms were
capable of developing an altered nitrogen isotopic
signature when exposed to low concentrations of
sewage nitrate. Organisms used in the experiment
were collected randomly from a reef, approximately

100 m offshore, in an area not known to be affected by
sewage effluent. To prevent stress, organisms were
collected and bagged underwater with as little distur-
bance as possible, and then transported to the labora-
tory in a cooler with ice before being introduced into
aquaria.

Individuals of each test species were grown under
controlled conditions for 7 d in either the presence
(treatment) or absence (control) of sewage effluent.
Four independent replicates of each treatment or
control were established. Each replicate comprised
an aquarium containing 1 individual organism. Each
aquarium was operated as a flow-through system fed
by sand-filtered seawater through header tanks at
2600 ± 10 ml min–1. Individual peristaltic pumps
(Masterflex®, L/S) delivered 5.20 ± 0.05 ml min–1 of
secondary treated sewage effluent from the Beenyup
WWTP to each of the treatment tanks, yielding a 1:500
dilution of sewage. This dilution was similar to that
found within a 1 km radius of the Beenyup sewage
outlet (Lord & Hillman 1995). Controls received no
sewage effluent. Artificial light (HPM CAT Series 605,
500 W) was used to provide 45 to 50 µmol m–2 s–1 at the
surface of each aquarium on a 12:12 h cycle. Aquarium
air pumps and water pumps (MINI-JET®, Aquarium
Systems) were also fitted to all aquaria to ensure oxy-
genation and mixing of the water. Temperature was
maintained at 18 to 22°C.

After 7 d the individuals were harvested and pro-
cessed for nitrogen-stable isotope analysis. The δ15N
levels of treatment and controls were compared by a
Student’s t-test to determine whether significant differ-
ences had developed. As the aim of this experiment
was simply to test that the test organisms could
develop an altered δ15N signature after 7 d exposure to
sewage, the δ15N levels of the sewage and seawater
were not determined. However, the charecteristics of
these sources were determined in the field study (see
following subsections).

Field sampling strategy. The test organisms were
collected from low-relief reefs along 3 transects, run-
ning north, south and west of the diffuser (Fig. 1), and
from a reference site 18.5 km north-northwest of the
outlet at Alkimos reef. Each transect was approxi-
mately 2 km in length, covering the reported extent of
the sewage plume radius (Lord & Hillman 1995). Four
sites were located at approximately 500 m intervals
along each transect (Fig. 1). All sites had similar reef
habitat in terms of rugosity, depth, aspect and algal
communities.

Where possible, 3 replicate samples of each organ-
ism were randomly collected from each site for stable
isotope analysis. The δ15N content of each species was
compared between sites to test for spatial variability.
Data were tested for normality and homogeneity of
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Fig. 1. Location of the Beenyup Wastewater Treatment Plant
(WWTP) outlet, showing the 12 sampling sites (S1–4, N1–4,
W1–4) located on 3 transects around the sewage outlet.
Hatched areas are low-relief reef (reef periodically covered 

with sand)
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variance using Cochran’s test and transformed using
logarithms if they failed the test. A 1-factor analysis of
variance (ANOVA) was used to test differences in
mean δ15N between sites for each test species. Tukey’s
post hoc test was used for pair-wise comparisons.

Replicate samples of sewage effluent, seawater and
groundwater were taken to ensure that potential
sources of DIN and PON were isotopically distinct.
Seawater was collected from Sites W1 to W4 and above
the outlet, at a depth of approximately 1.0 m. Ground-
water was sampled from 3 piezometers located be-
tween 500 m and 2.5 km inland. Secondary-treated
sewage effluent was obtained from the Beenyup
WWTP. Three replicate samples were collected in
November 1999 and again in March 2000. 

Collection and preparation of macroalgae, sponge
and ascidian samples. SCUBA divers collected macro-
algae randomly from each site in November, 1999.
Thalli and filter-feeders were dried at 65°C until dry,
and ground to a fine powder using a mortar and pestle.
For Clathria sp., the outer test was removed and the
internal tissue used for isotope analysis. For Pyura aus-
tralis, the stem tissue was discarded. Homogenised
tissue was analysed for δ15N on a Europa Scientific
ANCA-GSL 20/20 mass spectrometer. Precision for
replicate tissue samples was ±0.2‰. δ15N values are
reported relative to atmospheric nitrogen.

Collection and preparation of seawater, ground-
water and sewage. Seawater, groundwater and
sewage were collected in pre-washed plastic contain-
ers (5% HCl), stored on ice in the absence of light, and
returned to the laboratory. Samples were vacuum-
filtered (0.45 µm pre-combusted glasfibre filters) and
stored frozen until ready for distillation. To collect suf-
ficient nitrogen for 3 replicate isotope analyses (about
200 µg), it was necessary to distill 9 l of seawater, 3 l of
groundwater and 1.5 l of sewage.

The distillation procedure followed the methods of
Bremner & Edwards (1965), with modifications taken
from Cline & Kaplan (1975) and Velinsky et al. (1989).
Sample aliquots of 500 ml were added to the distilla-
tion flask, followed by 5.0 mg of Devarda’s alloy to
reduce nitrate to ammonia. A sufficient volume of 40%
NaOH was added to raise the pH to 9.5. Over 35 to
40 min, 250 ml of distillate was collected per sample in
a sealed ammonia recovery flask containing 10 ml of
0.003 M HCl and 30 mg zeolite (W-85 molecular sieve).
The distillate was stirred for 1 h to ensure the complete
adsorption of ammonium onto the zeolite, and the
zeolite slurry was collected onto a silica acetate filter
membrane by vacuum. The filter membrane plus
zeolite was dried for 48 h at 50°C, before being intro-
duced to a mass spectrometer.

Collection of oceanic and sewage POM. Filter
papers used for filtering oceanic and sewage POM (see

above) were dried at 65°C and stored whole in sealed,
pre-washed containers before being introduced to the
mass spectrometer. Samples were analysed as for
ground tissue. The precision for replicate sewage N
and oceanic POM samples was 0.2‰.

Calculation of proportion of sewage-derived N for
macroalgae. The contribution of sewage-derived ni-
trogen to the macroalgal δ15N signal at each site was
calculated using a single isotope, 2 end-member linear
mixing model (Balasdent & Mariotti 1996):

(1)

where δM, δA and δB are the mean δ15N value of
macroalgae, sewage DIN and background oceanic
DIN respectively. Variance (and, subsequently, stan-
dard deviation) estimates were made according to
Taylor (1982):

(2)

where , and represent variances of the

mean isotopic signatures for the macrolagae, the
sewage and background seawater respectively.

A 2 end-member model was appropriate as the esti-
mated groundwater stable isotope signature was indis-
tinguishable from background seawater, and so these
were pooled as a single source. Only 1 isotope was
used (nitrogen) as analytical constraints reduced our
confidence in applying the carbon isotope data in the
model (see ‘Results’ and ‘Discussion’ sections). In order
to apply this model we assumed no fractionation
effects by the test organisms, or at least consistent
fractionation across all sites, and that the background
oceanic DIN can therefore be estimated as the δ15N
value of macroalgae growing at the reference site.
Since the 3 species of macroalgae had different δ15N
values at the reference site, we applied a different
background DIN δ15N value in the model for each
species. This variability could be due to several sources
and this, as well as other constraints to the application
of mixing models, is discussed later. 

RESULTS

Secondary-treated sewage DIN (NH4
+ + NO3–) had

mean (±SD) δ15N values ranging from 25.3 ± 1.4‰ in
November to 13.5 ± 0.6‰ in March (Table 1). POM
from the same sewage had a mean δ15N value of 9.2 ±
2.2‰ in November 1999. The mean δ15N value for
oceanic POM collected at the reference site was 7.0 ±
0.03‰, similar to the value for POM collected from
directly above the Beenyup wastewater outlet (7.2 ±
0.1‰; Table 1).
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There was insufficient DIN in the samples of sea-
water and groundwater to permit isotope analysis (DIN
values ranged from 3.4 to 11.8 µg l–1). Consequently,
values for seawater and groundwater were estimated
from the literature.

Laboratory experiment

Ulva australis and Vidalia sp. grown in the presence
of sewage had higher δ15N levels than the controls
(Fig. 2, Table 2). Both displayed similar differences
between treatment and control tanks (1.7 and 1.4‰
respectively), the differences being statistically signifi-
cant in both cases (t = –2.96, p = 0.03 and t = –2.87, p =
0.03, for U. australis and Vidalia sp. respectively). The
δ15N values of Ecklonia radiata grown in the presence
of sewage was not significantly different from controls
(t = –0.81, p = 0.45). Both the filter-feeders, Clathria
sp. and Pyura australis, had significantly higher δ15N
values after exposure to sewage effluent, compared
with controls (t = –3.15, p = 0.03 and t = –3.03, p = 0.04
respectively).

Spatial patterns of δδ15N in macroalgae

The mean δ15N levels of Ulva australis at sites around
the outlet varied by 4‰, from 8.8‰ at Site W3 to
12.8‰ at Site N3 (Fig. 3). There was significant varia-
tion in δ15N among the sites around the outlet (Fig. 3)
and between all of these sites and the reference site
(6.1‰). Around the outlet, sites from the northern tran-
sect tended to have higher δ15N values than other sites,
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Table 1. δ15N values for the major sources of DIN in the study
area. WWTP: wastewater treatment plant. Values for oceanic
(background) DIN were derived from the literature (Miyake &
Wada 1967, Cline & Kaplan 1975, Kon-Kee & Kaplan 1989,

Sigman et al. 1997)

Source Mean δ15N (‰)

Sewage DIN
November 25.33 ± 1.45
March 13.47 ± 0.63

Sewage POM
Beenyup WWTP 9.17 ± 2.17

Oceanic DIN
Background nitrogen 6.7 (estimated)

Oceanic POM
Above outlet 7.23 ± 0.12
Reference site 7.02 ± 0.03

Table 2. Results of Student’s t-test (0.05 significance level) for
differences in δ15N levels of organisms grown in the presence
of sewage effluent (treatments) and those grown in seawater

without effluent (controls)

Species Control Treatment t df p
(‰) (‰)

Ulva australis 7.79 9.33 –2.96 6 0.03
Vidalia sp. 7.88 9.28 –2.87 6 0.030
Ecklonia radiata 9.79 10.24 –0.81 6 0.450
Clathria sp. 10.65 13.07 –3.15 4 0.030
Pyura australis 6.60 10.44 –3.03 4 0.040

Fig. 2. Mean δ15N levels (‰) of organisms grown in a 1:500
dilution of secondary-treated sewage effluent (treatment:
white bars) and in seawater (controls: shaded bars). Values
are means ± SE (n = 4). Differences were significant for all
species except Ecklonia radiata. Full specific names in Fig. 4

Table 3. Results of 1-factor ANOVA testing for differences in
δ15N levels in organisms collected from different sites around

the Beenyup WWTP outlet

Species SS df MS F p

Macroalgae
Ulva australis

Between 12.18 12 10.348 74.656 <0.001
Within 3.60 26 0.139
Total 127.78 28

Vidalia sp.
Between 61.54 11 5.594 16.286 <0.001
Within 7.90 23 0.344
Total 69.44 34

Ecklonia radiata
Between 48.98 12 4.081 4.084 0.001
Within 24.99 25 0.999
Total 73.96 37

Filter feeders
Clathria sp.

Between 11.91 7 1.701 15.015 <0.001
Within 1.81 16 0.113
Total 13.72 23

Pyura australis
Between 19.44 9 2.16 0.575 0.8020
Within 75.16 20 3.758
Total 94.59 29
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and along this transect values increased with increas-
ing distance from the outlet to a maximum of about
12.5‰ at 1500 m. Thalli collected from western tran-
sect showed the opposite trend, a decrease in δ15N with
distance from the outlet, with the westernmost sites,
W3 and W4, significantly lower than all other sites (p <
0.05). The southern transect had no discernible trend.

The mean δ15N levels for Vidalia sp. at sites around
the outlet varied by 3.9‰, from 6.3‰ at Site W4 to
10.2‰ at N4. The mean δ15N of plants collected from
the reference site (6.5‰) was significantly lower than
at sites S3, S1, N4 and W1 around the outlet (Fig. 3,
Table 3). Like Ulva australis, mean δ15N values de-
creased with increasing distance from the outlet along

the western transect, while those at
sites along the northern transect (N3,
N4) had comparatively high values.
While the trend was similar to that for
U. australis, the magnitude of differ-
ences among sites was less.

Trends in the δ15N levels of Ecklo-
nia radiata sampled around the outlet
were similar to, but less pronounced
than, those of Ulva australis and Vi-
dalia sp. North and south of the out-
let, mean δ15N levels increased with
increasing distance from the outlet,
and values along the western transect
were generally lower. The reference
site had values generally lower than
sites around the outlet. However,
there was a high degree of variability
within each sample site, and few of
the differences among sites were sig-
nificant (Table 3). In particular, the
reference site showed a high degree
of variability, which accounts for the
lack of difference between it and the
sites around the outlet; only Sites N3,
S3 and W1 had significantly higher
δ15N values than the reference site.

Spatial patterns of δδ15N in
filter feeders

The sponge Clathria sp. was not
found at any site on the north transect
or at Site W1. The spatial pattern for
δ15N levels at the remaining sites was
similar to that for Ulva australis and
Vidalia sp. Along the western tran-
sect, mean δ15N values decreased
with increasing distance from the
outlet, and samples collected from
the reference site were significantly
lower than those from several sites
around the outlet (S4, S2, W2, W3:
Fig. 3, Table 3). The spatial patterns
expressed in Clathria sp. δ15N values
were weaker than those expressed in
U. australis and Vidalia sp. For Pyura
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Fig. 3. Mean δ15N levels (‰) of organisms at the 12 sampling sites around the
Beenyup WWTP outlet (labelled as in Fig. 1) and the reference site (R). All values
are means ±SE (n = 3). Bar graphs on left show sites in order of increasing δ15N
with shading indicating the transect (black: north; grey: south; striped: reference
site; white: west site. Shared horizontal lines above bars indicate no significant
difference (p > 0.05: Tukey’s test). Line graphs on right show values along the 

3 sampling transects (S, N, W) and at R. Full specific names in Fig. 4
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australis, there was no significant spa-
tial variability in δ15N among the sites.

Proportion of sewage DIN
assimilated by macroalgae

Since sewage DIN showed sig-
nificant temporal variability in δ15N
(13.5‰ as observed in March, or
25.3‰ as observed in November) and
as mixing models are sensitive to the
values of the sources used, the model
was solved with both values. In both
cases, the model results indicated
that macroalgae derived significant
proportions of their assimilated N
from sewage-derived DIN, even as
far as 2000 m north of the diffuser
(Fig. 4).

Thalli north of the diffuser were
estimated to more consistently assim-
ilate higher proportions of DIN from
sewage effluent. The model suggests
that Ulva australis assimilated 25 to
90% of its nitrogen from sewage
effluent, depending on the site and
the sewage DIN value used (Fig. 4).
Vidalia sp. thalli collected north of
the outlet were estimated to have
assimilated between 5 and 53% of
their nitrogen from sewage DIN, and
Ecklonia radiata between 9 and
74% (Fig. 4). Organisms sampled
from the 3 westernmost sites (W2,
W3 and W4) and from the reference
site generally assimilated a much lower proportion of
their DIN from sewage effluent: between 14 and
57% for U. australis, 0 to 15% for Vidalia sp. and
0 to 48% for E. radiata,  with a decreasing trend west-
wards.

DISCUSSION

The laboratory experiment confirmed that the spe-
cies of macroalgae tested can assimilate sewage-
derived DIN and display a measurably altered δ15N
level after as little as 7 d exposure to sewage effluent.
Ulva australis and Vidalia sp. developed significantly
higher values, suggesting that these species respond
rapidly to nutrient additions and are capable of acquir-
ing measurably altered values at timescales of less
than 7 d. Ecklonia radiata on the other hand failed to
develop any signal after 7 d.

Ulva australis is an opportunistic, foliose alga, with a
high nitrogen uptake rate (Wallentinus 1984, Lavery &
McComb 1991) that allows it to respond quickly to
additional nutrients in the water column (Lyngby &
Mortensen 1994). As we have shown, it can assimilate
significantly sufficient amounts of DIN from the efflu-
ent over a comparatively short period for its δ15N con-
tent to strongly reflect nutrient sources it has assimi-
lated in the recent past. Although unexpected, the
similar response of Vidalia sp. exposed to sewage sug-
gests that it too is capable of responding over this time
scale. The smaller surface area to volume ratio of corti-
cated foliose algae such as Vidalia sp. compared to
foliose algae was expected to result in lower nitrogen
uptake rates and higher half-saturation constants. This
would reduce the ability to acquire nitrogen during a
pulse event and a greater dilution of the new nitrogen
by nitrogen already contained within the more sub-
stantial thallus. However, while the functional forms of
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Fig. 4. Estimates of the percentage of nitrogen acquired from sewage DIN for the
3 species of macroalgae at each sampling site, based on March and November
sewage DIN δ15N values of 13.5‰ (left) and 25.3‰ (right) respectively. Bar shad-
ing indicates the transect on which sites were located (black: south; grey: north;
white: west). Values for the reference site are not presented as it was assumed

there was 0% sewage-derived nitrogen at this site
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algae broadly relate to differences in physiological
attributes, there can be significant variability within a
group (Littler & Arnold 1982, Wallentinus 1984, Padilla
& Allen 2000), and it may be that these 2 species have
similar physiological attributes with respect to DIN
uptake.

Ecklonia radiata typically has a very low nitrogen up-
take rate and large amounts of structural biomass (Wal-
lentinus 1984), and so would require longer periods of
exposure to assimilate sufficient new nitrogen to alter
the average δ15N signature of its thallus. This may
account for the failure of E. radiata to acquire a mea-
surably different signal over the experimental period.
Phaeophycean algae have often been cited in the litera-
ture as declining in abundance and diversity around
sewage outlets as they are known to be sensitive to
sewage (Munda 1993, Peckol & Rivers 1996). It is pos-
sible that E. radiata were simply too stressed to accu-
mulate nitrogen. However, the trends observed in the
field-sampling programme suggest that E. radiata was
assimilating sewage-derived nitrogen near the outfall.

The time required for thalli to develop measurable
changes in their nitrogen isotopic signature following
exposure to sewage would depend on more than just
physiological attributes. The concentration and specia-
tion of the DIN source, and environmental conditions
such as irradiance and hydrodynamics, could affect the
magnitude of fractionation, and hence signal acquired,
over a given period of exposure (Montoya 1990 as cited
in Goericke et al. 1994). However, the results of this
study indicate that the relative magnitude of any
response appears related to the functional form of the
algae; Ulva australis and Vidalia sp. may vary in the
time necessary to acquire a signal, but it is reasonable
to assume that they will respond more quickly than
Ecklonia radiata.

Spatial patterns in sewage dispersal

If we accept that the isotopic signatures of these spe-
cies provide a representation of nutrient sources inte-
grated over different time periods, then we should be
able to interpret the spatial patterns in δ15N signatures
in terms of the timescales of effluent dispersal in a
region. How then do we interpret the results for the
3 macroalgae sampled here?

The dispersal of effluent revealed by the macroalgal
δ15N signals is entirely consistent with the known dis-
persion pattern. The higher δ15N of Ulva australis andVi-
dalia sp. sampled north of the outlet indicate a generally
northerly drift of the plume. West of the outlet there was
a decline in δ15N for both species, indicating little west-
erly drift of the plume. These trends conform with
models of the plume dispersal (Pattiaratchi & Knock

1995, Kinhill unpubl. data) and with Lord & Hillman’s
(1995) conclusion that sites north of the outlet are most
often exposed to sewage effluent at the time of this study.
The relative strengths of the trends in the 2 species
reflect the timescale of this sewage dispersal. The U. aus-
tralis and Vidalia sp. results imply that the plume had un-
dergone a predominantly northerly drift in the preceding
few days. The weaker differences between  the northern
and other sites for Ecklonia radiata can be interpreted
as reflecting a generally northerly drift over a longer
timescale (weeks to months) but with a broader regional
dispersal at intervals during that period.

The lack of any statistical significance in the spatial
pattern of Ecklonia radiata δ15N may indicate that all
sites, including the reference site, are equally influ-
enced, or not influenced, by sewage nitrogen. How-
ever, this is inconsistent with the data for Ulva australis
and Vidalia sp. More likely there is a fundamental bio-
logical difference between the species. The variability
in δ15N of E. radiata at the control site is exceptionally
large compared to the variability in the other species
and sites, and could arise from several sources. It is
possible that plants of different ages were sampled,
although there was an equal probability of this occur-
ring at the other sites too. Other studies have reported
variability in the stable isotope values of different tis-
sues in marine plants (Stephenson et al. 1986, Shearer
& Kohl 1989, Boyce et al. 2001). E. radiata has a higher
degree of tissue differentiation than either U. australis
or Vidalia sp., and while we attempted to control for
this, it is possible that we captured variability between
parts of the thallus blade. However, recent sampling
(P. Lavery unpubl. data) indicates no significant varia-
tion in δ15N levels among non-holdfast tissue in E. radi-
ata. Despite the lack of statistical support, it is clear
that E. radiata shows the same underlying trends in the
spatial pattern of δ15N. This suggests that at relatively
long timescales (greater than weeks), the dispersal
of sewage is widespread through out the region,
although still generally with a northerly and southerly
dispersal and little westerly movement. Clearly there is
a need to more fully understand the cause of the sig-
nificant variability in the δ15N signature of E. radiata,
and in any species which might potentially be used for
monitoring purposes.

The δ15N levels recorded for Ulva australis indicate
that stable isotope analysis may provide a more
sensitive tool for tracking sewage dispersal than con-
ventional methods. Lord & Hillman’s (1995) model sug-
gested that detectable differences in nutrient con-
centrations due to sewage discharge abate between
1000 to 2000 m from the outlet. If the plume dissipated
at 1000 m, it could be expected that δ15N levels for
U. australis at Sites N3 and N4 (1500 and 2000 m north
of the diffuser respectively) would be comparable to
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those at the reference site. However, U. australis had
elevated δ15N levels as far as 2000 m north of the out-
let, indicating that sewage nitrogen was carried and
assimilated by biota at least that far away.

The isotope values also revealed finer-scale disper-
sal patterns. With the exception of Vidalia sp. at Site
S1, mean δ15N levels of for all 3 macroalgae at 500 m
north and south of the outlet were at least 1.5‰ lower
than at sites 1000 m from the diffuser. The effluent
plume is known to have a buoyant stage, whereby it
is carried by surface currents before becoming fully
mixed with the water column (Lord & Hillman 1995).
The macroalgal δ15N data are consistent with the
plume remaining buoyant for the first 500 m north and
south of the diffuser. The lower δ15N values in this zone
suggest less exposure to sewage-derived N than at
sites further north and south. Similar trends in δ15N sig-
nals for macroalgae have been found around a waste-
water outlet in Saldanha Bay, South Africa (Anderson
et al. 1999, Smit unpubl. data).

Spatial patterns in dispersal of sewage POM

A comparison of values between POM collected from
the reference site and that collected from filtered sewage
revealed little difference in the δ15N values of these
sources (7.1 and 9.16‰ respectively). Owens (1987) also
reported values for POM for similar sources (ocean mean
range 4.6 to 9‰; sewage mean range 2.3 to 7.2‰), and
concluded that the δ15N signatures of organisms assimi-
lating POM is unlikely to be useful in distinguishing
which sources were assimilated. 

However, the trends in the δ15N signature of Clathria
sp. were similar to trends displayed by macroalgae
species. Clathria sp. grown in treatment tanks in the
laboratory had higher δ15N than individuals grown in
control tanks, there was a decrease in δ15N west of the
outlet, and samples from the reference site had lower
δ15N values than at several of the sites around the
outlet. Tipping (unpubl. data) sampled phytoplankton
that had been exposed to sewage DIN and observed
elevated δ15N values. A potential explanation for the
results, then, is that Clathria sp. selectively assimilated
phytoplankton, bacteria or some other component of
the total POM which could have elevated the δ15N
derived from assimilation of sewage DIN. Different fil-
ter-feeders are known to target different components
of the POM on which they feed. For example, sponges
generally ingest smaller size fractions than other
suspension-feeders (Reiswig 1975, Stuart & Klumpp
1984). However, not enough is known about the feed-
ing biology of either of the filter-feeders used here, or
the δ15N values of different fractions of POM, to con-
firm this hypothesis, and further research is warranted.

Contribution of sewage nitrogen to plant 
requirements

The range of δ15N values (13.5 to 25.3‰) marginally
extends the range of values reported for sewage
effluent in the literature (Aravena et al. 1993, Paerl &
Fogel 1994, McClelland & Valiela 1998). The value for
oceanic DIN could not be obtained by distillation due
to the low nitrogen concentrations in seawater, and
an estimate was made based on values provided by
Miyake & Wada (1967), Cline & Kaplan (1975), Kon-
Kee & Kaplan (1989), Sigman et al. (1997), and the
values recorded for each species of macroalgae at the
reference site. The literature sources suggest that
oceanic waters have levels in the order of 6.7‰.
Macroalgae at the references site had δ15N values
between 6 and 8.5‰. While it is reasonable to expect
some fractionation of DIN during uptake by primary
producers (Fogel & Cifuentes 1993), there is no pub-
lished literature providing any indication of likely
fractionation factors of macroalgae. We therefore
assumed no fractionation, and for each species of
macroalgae assumed that the δ15N levels at the refer-
ence site reflected the value of background marine
DIN. The large distinction between oceanic and
sewage δ15N values makes it possible to differentiate
between these 2 sources for tracer studies. The only
other potentially significant source of DIN to the
region is groundwater (Johannes & Hearn 1985).
Groundwater typically has δ15N values between
–2 and 8‰ (Kreitler et al. 1978, Aravena et al. 1993,
Macko & Ostrom 1994), making it difficult to distin-
guish it from oceanic nitrogen sources, but still allow-
ing any signal from sewage to be detected.  This num-
ber of assumptions requires that any outputs from the
mixing model be interpreted with great caution. At
this point in time, there is insufficient background
information on the fractionation effects associated
with macroalgal uptake of DIN to permit this source
of variability to be reduced. Consequently, the out-
puts cannot be interpreted with any degree of statisti-
cal confidence, but do serve as a rough estimate of
likely nitrogen sources to macroalgae at each site.
This also emphasises the need for further research
into fractionation effects during macroalgal uptake
and assimilation of nitrogen.

Depending on the δ15N value of the sewage used,
Ulva australis north of the outlet was modelled to have
assimilated between 25 and 90% of its nitrogen from
sewage DIN. These estimates indicate that sewage
effluent contributes a significant proportion of the
nitrogen to this alga. Several studies have reported
a decline in the number and abundance of red
and brown macroalgae species (Coles & Ruddy 1995,
Peckol & Rivers 1996) and increased abundance of
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opportunistic Chlorophyta (Dhargalkar 1986) in the
vicinity of sewage outlets. The isotope values estab-
lished in this study demonstrate that the sites around
the outlet and at distances exceeding those previously
thought to be affected by the sewage plume receive
sewage effluent. While the results do not imply any
adverse impact resulting from this exposure, they do
indicate that stable isotope data provide a means
of identifying, with high spatial precision, potential
‘impact’ and ‘control’ sites for assessment of sewage-
related effects.

Conclusions

We conclude that the δ15N signatures of marine
macroalgae can provide a useful means of tracing
sewage dispersal in well-mixed ocean conditions,
where conventional methods may fail to reveal the
extent of sewage dispersal. In addition, the δ15N sig-
nals of macroalgal species with different nutrient
uptake characteristics may provide an integrated
picture of the dispersal of sewage over different
timescales. On the other hand, the results were
ambiguous with respect to the usefulness of filter-
feeder isotopic signatures for tracing particulate
sewage dispersal. Our experimental design did not
replicate functional groups of macroalgae, and so we
cannot establish conclusive relationships between
functional form and the propensity for algal isotopic
signatures to reflect timescales of sewage dispersal
in the environment. This would require an experi-
mental and field sampling design with replicate spe-
cies of each functional form. However, the data we
have presented here are entirely consistent with our
hypothesis, and can be interpreted as suggestive of a
relationship between functional form and isotopic sig-
natures that can be applied to reflect timescales of
sewage dispersal. In this respect, the choice of species
and a sound understanding of their biology with
respect to stable isotopes would be required. This tech-
nique could complement conventional plume-tracking
techniques and permit control-impact-type studies by
confirming with greater certainty whether the algal or
other biotic assemblages at a site have been exposed to
sewage over different time periods.
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