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PREDATION, COMPETITION,
AND PREY COMMUNITIES:
A Review of Field Experiments

Andrew Sih, Philip Crowley, Mark McPeek*, James Petranka,
and Kevin Strohmeier

Ecology Research Group, T. H. Morgan School of Biological Sciences, University of
Kentucky, Lexington, Kentucky 40506

INTRODUCTION

A central controversy in ecology addresses the relative importance of competi-
tion and predation in determining the characteristics of organisms (e.g. be-
havior, life history), populations (e.g. population size, stability), and com-
munities (e.g. species diversity, total and relative abundance patterns).
Through the early 1970s the “competition school” appeared to dominate (e.g.
19, 20, 107, 109, 166). However, in recent years a discernible shift has
occurred towards the notion that predation often has the greater impact, some-
times by reducing the importance of competition (e.g. 16, 22, 133, 134, 206).

A related controversy concerns the techniques used to evaluate the im-
portance of a given factor. Before the 1970s, field ecologists relied primarily on
observation. More recently, experiments have become part of the standard
protocol in field studies. Each approach has benefits and drawbacks. Controlled
experiments produce stronger inferences than do observations alone; however,
experiments are often impractical, particularly where the questions are broad in
scope (e.g. on a geographic or an evolutionary scale). Observational techniques
can address broad questions but are more open to alternative interpretations.

*Current address: Department of Zoology, Michigan State University, East Lansing, Michigan
48824

269
0066-4162/85/1120-0269$02.00



270 SIH ET AL

The recent burst of experimental work allows the use of a third method: the
review and statistical analysis of the results of a large number of field ex-
periments. Connell (24) and Schoener (167) recently surveyed field competi-
tion experiments. Although the tone of their conclusions differed markedly,
both showed that competition often occurs.

The frequent occurrence of competition, however, does not imply that
competition is more important than predation. At minimum, one must do a
similar survey of the experimental work on predation. We summarize the
results of such a survey. The organization of the paper is as follows: (a)
definitions and methodology; () results, including tests of previously sug-
gested trends; (¢) analyses on the overall relative importance of predation and
competition; (d) a survey of studies that include experiments on both competi-
tion and predation; and (e) suggestions for future study. Brief summaries at the
end of each results section emphasize major gaps in the studies to date and so
suggest fruitful directions for future research.

DEFINITIONS AND METHODOLOGY

What is predation? In its broadest sense, predation includes any interaction in
which energy flows from one organism to another. By that definition all
animals and some plants are predators. We somewhat arbitrarily decided to
exclude carnivorous plants, detritivores, parasites, and pathogens, limiting our
survey to animal carnivores, herbivores, omnivores, and seed predators. A
rather fuzzy line separates some organisms that we included from those that we
excluded (e.g. nearly all herbivorous insects can be considered parasites). Our
decision was based primarily on our perception that most of the ideas concern-
ing the effects of predation come from studies of the included groups.

What is a field experiment? We followed Schoener’s (167, p. 242) definition
that a field experiment is a manipulation (here, of predator density) “in which
some major natural factor extrinsic to the organisms of interest is uncontrolled.”
This kind of manipulation includes both removals and additions, as well as
removal with restocking of predators at controlled densities. Both fenced
enclosures/exclosures and experiments with no artificial barriers to predator
movement were included in our analysis.

We initially hoped to consider only studies with no obvious design problems.
However, many studies lacked either proper controls, sufficient replication
(many were pseudoreplicated—see 69a), or statistical analyses. Ideally, treat-
ments and controls should be performed at the same time and place, so that the
two experience the same uncontrolled environmental variations. We included
studies in which controls and treatments were close enough that we believed the
controls to be reliable. We excluded studies with no controls or with no
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replication, but included those with pseudoreplication or low replication.
Finally, a surprisingly large proportion of the studies lacked any statistical
analysis of the data. We excluded these studies if they provided no measures of
the variation among replicates. Where results included standard errors but no
statistical tests, we attempted to judge the statistical significance of any appar-
ent differences. Although we may have made some errors, these are unlikely to
have changed our qualitative conclusions. Overall, our tack was to include
flawed studies but to record their problems to permit analyses comparing results
based on all studies to those with or without problems.

We did not attempt an exhaustive review of all field experiments on preda-
tion. Instead, we followed Connell’s (24) basic protocol. We surveyed 20 years
(1965-1984; not including the last two months of 1984) of seven journals:
American Naturalist, Ecology, Ecological Monographs, Journal of Ecology,
Journal of Animal Ecology, Limnology and Oceanography, and Oecologia.
This systematic and, we hope, unbiased survey yielded 139 papers. Un-
fortunately, this procedure left out some important studies of predation, includ-
ing a few inadvertently missed within the bounds of our survey. We apologize
for these oversights.

Analyses were done on both a “by study” and a “by comparison” basis.
Deciding how a series of experiments should be divided into distinct “studies”
is not straightforward. We defined a single study as including all experiments
discussed in a single paper. We feel confident that any other definition of a
study would not alter major qualitative conclusions.

A given study can include dozens of comparisons between experimental
treatments and controls for different taxa or response variables. For example, a
study might look at the effects of predator removal on prey species diversity,
total prey abundance, and on the abundance of each of 10 prey taxa. Such a
study would include 12 comparisons. If the study was repeated in two different
years, we have 24 comparisons, and so on. The 139 studies included 1412
comparisons. Each comparison was categorized in the following ways (see
Table 1): by latitude, by ecosystem type, by predator and prey taxa, by predator
trophic level, by type of experimental manipulation, by type of response, and
by magnitude of response. To produce adequate sample sizes for statistical
analysis we were forced to combine groups that might be rather dissimilar; for
example, the terrestrial system includes experiments done in tropical and
temperate forests, grasslands, deserts, and tundra. This procedure is con-
servative: it might mask interesting differences but is unlikely to produce
speciously significant results. Our full data set is briefly summarized in Table 2.

Most of the classifications listed in Table 1 and used in Table 2 are self-
explanatory, but a few require additional explanation.

In describing the types of experiments, we use fenced to signify any type of
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Table 1 Classification variables and categories resulting from categorizing experiments, the con-
trasts performed on each classification variable, and the response variables for which the contrasts were
performed

Classification variables Categories Contrasts
Latitudinal zone Temperate (TM) TM X others
Tropical (TR) TR X PL
Polar (PO)
System Intertidal (INT) TER X others
Other marine (MAR) INT&MAR X LOT&LEN
Lotic (LOT) INT X MAR
Lentic (LEN) LOT X LEN
Terrestrial (TER)
Predator type Mammal (MA) MAG&BI&HP&FI X AR&MO&IN
Bird (BI) AR X MO&IN
Reptile or amphibian (HP)
Fish (FI)

Arthropod (AR)
Mollusc (MO)
Other invertebrate (IN)

Predator trophic level Herbivore (HB) HB x CAl CA2
Primary carnivore (CAl) CAl X CA2
Secondary carnivore (CA2)
Omnivore (OM)
Seed predator (SE)

Other (OT)
Unknown (UK)
Experiment type Removal fenced (RF) RF&RUF X SF&SUF&AF&AUF
Removal unfenced (RUF) RF X RUF
Stocked fenced (SF) AF&SF x AUF&SUF

Stocked unfenced (SUF)
Addition fenced (AF)
Addition unfenced (AUF)

Response variables

Species diversity (SD)

Total prey abundance (TO)
Relative prey abundance (RE)
Population size (PO)

Size structure (SI)

Prey fitness (FT)

Prey growth rate (GR)

Prey feeding rate (FR)

Prey behavior (BE)

Other (OT)
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artificial barrier to predator movement. This includes both obvious barriers
such as cages and more subtle ones such as “sticky fences” to keep ants off
plants, or copper paint to limit the dispersal of intertidal gastropods.

Different measures of prey abundance (including number, density, biomass,
percent cover) were used in the studies: (@) Some investigators quantified the
abundance of one or more prey taxa (species, genus, or sometimes higher
levels) but did not report total prey abundance. We termed the abundance of
each taxon prey population size, even though in many instances the taxa
quantified were of a higher level than species. (b) Some papers reported the
abundance of both separate prey taxa and the summed abundance of all prey.
The abundance of each taxonomic grouping is prey population size, whereas
the sum is total prey abundance. (c) Finally, some studies examined the
abundance of only one prey grouping. If this grouping represented only a small
fraction of the predator’s overall diet, we referred to their abundance as prey
population size, but if the grouping included most of the available prey for that
predator, we called it fotal prey abundance. Although some subjectivity is
involved, we found the distinction between these two categories was usually
clear.

Several other categories of prey response also deserve discussion. Species
diversity includes species richness as well as measures of diversity that in-
corporate both the number of species and their equitability. Relative prey
abundance refers to the proportion of prey in each category. Size structure
refers to the distribution of the sizes of prey individuals. Individual fitness
includes any measure of the survivorship or fecundity of prey individuals.
Individual growth includes prey growth rate and size at a particular stage.
Behavior includes habitat use, diet, activity level, and time of activity.

An expected response takes place when a higher density of predators results
in a reduction in either prey species diversity, total prey abundance, prey
population size, individual prey fitness, individual prey growth rate, or prey
feeding rate. An unexpected response is the opposite, in each case. The
keystone predator effect (133, 134) is thus an unexpected effect in this sense.
The keystone effect goes against the straightforward expectation that predation
should reduce prey populations and, by driving some prey locally extinct,
reduce prey species diversity. Prey relative abundance, size structure, and
behavior can only be classified as “expected” or “unexpected” if some details
on the predator-prey interaction are available; for example, to have an expecta-
tion about the effects of predators on relative prey abundance and size structure,
we must know something about predator preferences for different prey taxa or
sizes.

Finally, we attempted to estimate roughly the magnitude of prey responses to
predator manipulations. An increase or decrease by at least a factor of two (i.e.
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+ > 100% or — > 50%) we called a large change, and inversely, an increase or
decrease of less than a factor of two we called a small change.

Statistical analyses consisted primarily of G-tests (with the Williams correc-
tion—see 205a) on the numbers of (a) responses vs no responses; (b) large vs
small responses; and (c¢) expected vs unexpected responses. These tests com-
pare responses to predator manipulations following the classification schemes
listed in Table 1. Tests were done on both a “by study” and “by comparison”
basis. For each classification variable we decomposed the overall effects in a
predetermined way designed to preserve orthogonality. The contrasts used are
also shown in Table 1. The significance level for all tests is 0.05.

In some cases we observed cross-correlations that can make it difficult to
determine whether a statistically significant trend reflects a causal relationship.
For example, the marine intertidal system has a disproportionately large num-
ber of studies on herbivores and nonarthropod invertebrates. This system shows
significantly larger predation effects than do other systems. However, this trend
might not reflect anything special about the intertidal system; instead, it might
be due to herbivores having larger effects than carnivores, or nonarthropod
invertebrates having larger effects than other predator taxa. We did not attempt
to tease apart the effects of cross-correlations between contingency tables in the
statistical analysis; but where we can identify cross-correlations, we discuss
their potential importance.

RESULTS AND DISCUSSION
Distribution of Effort

The number of papers on experimental manipulations of predators has in-
creased in a roughly sigmoid fashion over the past 20 years. From 1967 to 1976
the mean number of studies per year was 2.4. This increased to 5.3 for
1977-1979, 10.5 for 1980-1981, and 24 in 1982. However, the numbers may
be approaching a plateau with 25 in 1983 and 29 in 1984. About half of these
papers, 69 out of 139, appeared in Ecology. Oecologia with 26 and Ecological
Monographs with 19 were also well represented. Only 25 studies appeared in
the other 4 journals.

The great majority of the field experimental studies on predation have been
done in the temperate zone—120/139 studies or 86%. The overall effort (as
based on the number of comparisons) is roughly evenly divided among five
major systems (with a slight underrepresentation of lotic freshwater), and
among three main predator taxonomic groupings: vertebrates, arthropods, and
nonarthropod invertebrates. Also, about equal effort has been devoted to
herbivore and primary carnivore manipulations, while only about half that
amount has been focused on secondary carnivores. The numbers of com-
parisons and the percentage in some subcategories (e.g. system vs taxa, and
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system vs predator-trophic level) are shown in Table 3. Some notable trends are
as follows. In the intertidal, a disproportionate number of comparisons involve
manipulations of herbivores relative to other predator trophic levels—
particularly the predator taxa, molluscs and echinoderms. In the terrestrial
environment, manipulations of arthropod herbivores are overrepresented. In
freshwater, most of the comparisons involve carnivorous vertebrates, usually
fish and amphibians. To some extent, these trends reflect the high relative
abundance (or biomass) of these predators in these systems. Besides the lack of
experimental work in nontemperate regions, perhaps the most glaring gaps are
the almost total lack of manipulations of herbivores in freshwater and of
nonarthropod invertebrates in freshwater and on land. To date, we have very
little experimental evidence on how zooplankton affect phytoplankton com-
munities or on how the numerous freshwater and land molluscs affect the
organisms on which they feed.

Table 4 shows the distribution of effort by response type. The apparent
paucity of studies examining the effects of predators on patterns of relative prey
abundance is misleading. In fact, these effects are usually recorded but not
explicitly analyzed. For example, many studies show that when predators are
removed, some prey increase and others decrease in abundance, or that some
prey populations increase more than do others. These changes are analyzed on a
species-by-species basis. Although relative abundances clearly change, no
statistical analyses are done to address this change specifically. In contrast, the
lack of studies on the details of individual prey responses to predators is real.
Surprisingly few experimental field studies have been published addressing the
effects of predators on prey behavior and prey feeding rates (but see 27, 44, 52,
169, 170, 201).

To summarize this section (@) Most published experimental studies on
predation have appeared in the last three years; many in the journal Ecology. (b)
Most of the work has been done in temperate regions. (¢) Marine experiments
have been primarily on nonarthropod invertebrate herbivores; terrestrial work
has primarily been on arthropod herbivores; and freshwater work has con-
centrated on vertebrate carnivores. (d) Manipulations of herbivores have rarely
been done in freshwater; on land and in freshwater, few studies have looked at
the effects of nonarthropod invertebrates on their prey. (¢) The effects of
predators on prey behavior and prey feeding rates have relatively rarely been
examined experimentally in the field.

Problems

A surprisingly high proportion of the studies in our survey had obvious prob-
lems with lack of replication (only one replicate) or lack of statistical analysis.
In several other instances, low replication in a highly variable system may have
caused a trend to be nonsignificant (184a); in some cases, prey were ten times
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Table 4 Distribution of predation and competition studies by response type

Classification Predation Competition®
Species diversity 19 0
Total prey abundance 30 12
Relative prey abundance 4 0
Population size 79 95
Size structure 11 2
Individual fitness 30 55
Prey growth rate 9 41
Prey feeding rate 1 6
Prey behavior 6 30
2From Schoener (167).

more abundant in the absence of predators, but this difference was not signifi-
cant. Although such studies may suffer from insufficient replication, we did not
classify them as poorly replicated if they contained more than one replicate.
Similarly, we did not judge the quality of the statistical analyses performed; we
merely recorded cases where no statistics were done. To be fair, in some
instances, the effect of the predator manipulation was so striking that statistical
analyses would have seemed superfluous. For example, several studies did not
include statistical analyses when a complete switch from 100% of one prey
species to 100% of another prey species occurred following the removal of
predators.

Using the above guidelines of 139 studies, 40% showed low (1 or 2 repli-
cates) or pseudoreplication; 35% included no statistical analyses of predation
effects; and 53% had one or both of these problems. The trend, however, is
toward improved designs and analyses. Before 1982, 45/61 or 74% of the
studies had one problem or the other. For 1982-1984, this proportion dropped
to 29/78, or 37%. This difference is statistically significant (G = 18.63, p <
.01). The problem of low replication can be logistically difficult to solve, as, for
example, in studies of whole lake dynamics. The lack of statistical tests is less
defensible. The seven journals surveyed appear to have greatly reduced their
acceptance of papers without such analyses over the last three years. [The
proportion of predation experiments without statistical tests was 35/61 (57%)
before 1982, and 14/79 (18%) for 1982-1984.]

Summarizing this section, we find a surprisingly high proportion of the
experimental studies on predation had problems with low replication or lack of
statistical analysis. This problem has been greatly reduced in the last three
years.

Analyses by Study

Virtually every report of experimental field studies on predation showed some
significant effects (132/139 or 95.0%). Large responses by prey were very
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common; 112/131 studies or 85.5% had at least one comparison where prey
showed a large response to predator manipulations (eight studies did not have
information on the magnitude of effects). A sizable fraction (54/135 or 40.0%)
showed at least one unexpected effect.

Table 5 shows the percentage of studies that yielded any significant effects,
any large significant effects, and any unexpected significant effects, depending
on latitude, system, predator taxon or trophic level, response type, and experi-
ment type. In some instances where sample sizes were very small, classifica-
tions were either dropped (e.g. only three trophic levels were analyzed) or were
combined (e.g. community effects include species diversity, total prey abun-
dance, and relative prey abundance; individual effects include effects on
fitness, feeding rate, growth rate, and behavior).

The outstanding feature of Table 5 is the paucity of significant differences
among categories. Except for contrasts involving prey response type, only 1 of
48 G-tests was statistically significant. Manipulations in aquatic environments
showed significant effects more often than did experiments on land. Since
many tests were performed and only this one test was significant at the 0.05
level, this single “significant” effect is probably not biologically meaningful.

For response type, community-level responses were generally not as com-
mon and not as large as at the population- and individual-levels. However, this
is probably an artifact of the analysis. A typical community study might
examine the effects of predators on prey species diversity, prey total abun-
dance, and the population size of 10 prey species. Our analysis would then
show 2 community comparisons and 10 population size comparisons. In fact,
the average number of comparisons per study was: 2.42 for community level
effects, 5.39 for individual effects, and 11.21 for population size effects.
Although in studies with more comparisons a lower proportion was significant
(r> = 0.11, p < 0.001; proportions were arcsine transformed), studies with
more comparisons were more likely to have at least one comparison with either
some effect or a large effect.

The negative correlation between the number of comparisons per study and
the proportion showing significant effects might reflect an interesting bias.
Investigators examining only one or few species may tend to choose species
likely to show effects. In contrast, studies examining many prey species may
yield a more unbiased (and lower) estimate of the likelihood that a randomly
chosen prey species will respond to predator manipulations (see 24 for a similar
analysis of competition studies). For predation experiments this bias appears to
be weak; the number of comparisons explains only 11% of the variance in the
proportion of studies yielding significant effects.

Summarizing this section (a) Almost all of the studies showed some signifi-
cant effects, and the great majority showed some large effects. (b)) When
analyzed by study, predation effects appeared consistent regardless of latitudi-
nal zone, system, predator trophic level, predator taxon, or experiment type.
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Analyses by Comparison

The previous section had the perhaps uninteresting theme that the intensity of
predation is the same regardless of where you are, what you study, or how you
do your studies. This conclusion, however, does not hold when analyses are
done by comparison rather than by study. The important differences between
these analyses are that (a) tests using all comparisons have much larger sample
sizes; and () tests using all comparisons weight the studies in proportion to
their numbers of comparisons. We feel that the following analyses using all
comparisons provide a better test of various ideas concerning the relative
importance of predation under different circumstances.

FREQUENCY AND MAGNITUDE OF EFFECTS  Table 6 shows the frequency of
significant effects and of large significant effects depending on the latitude,

Table 6 The proportion of comparisons that yielded significant effects and large
significant effects (%)

Classification Effect” Large®
Latitude
Temperate I 59.3 (1241)¢ I 71.9 (658)
Tropical Il 66.2(139) | I 77.3 (44)
Polar Il 56.3 (32) Il 66.7 (15)
System
Intertidal I 66.1 (289) I|| 79.1 (187)
Other marine I 48.6 (354) 1Ll 80.1 (146)
Lotic I} 54.6 (183) ]| 74.0 (73)
Lentic | 70.5 (244) 111 66.2 (133)
Terrestrial | 55.8 (294) I 69.6 (158)
Predator type
Vertebrate | 58.5(482) 59.9 (227)
Arthropod I| 57.2(425) L] 69.5 (226)
Other invertebrate Il 60.9 (435) Il 84.3 (255)
Predator trophic level
Herbivore ’IP 65.4 (512) | 80.1 (327)
Primary carnivore L 57.5 (532) Il 64.0 (261)
Secondary carnivore Il 47.4 (268) 11 73.3 (101)
Response type
Population size ]P 52.6 (852) 1 70.5 (308)
Community I 70.3 (145) I'| 66.3 (83)
Individual Il 64.5(248) Il 69.7 (155)
Grand mean 59.9 (1412) 72.1 (717)

*Comparisons with any significant effect as a percentage of all comparisons.

®Comparisons with any large effect as a percentage of those with significant effects.

“Numbers in parentheses are the total number of comparisons.

9Broken vertical lines indicate contrasts that were made: asterisks indicate comparisons that are
significantly different.



PREDATION AND PREY COMMUNITIES 287

system, predator taxa, predator trophic level, response type, and experiment
type involved.

By latitude  One of the classic unresolved issues in ecology is the explanation
of latitudinal trends in species diversity (e.g. 87, 143, 144). One popular
explanation for high diversity in the tropics stipulates that predation generally
increases species diversity and that predation is more intense in the tropics (e.g.
23,74, 133). However, few studies have specifically attempted to compare the
relative intensity of predation in temperate versus tropical regions (but see 9).
Our survey indicates a slight trend towards both more frequent and stronger
effects of predation in tropical latitudes; however, this trend was not statistical-
ly significant (Table 6). The problem may lie in the paucity of experimental
studies on predation in the tropics. Although the existing data set does not
convincingly support the popular notion that predation is stronger in the tropics,
this issue requires more data before a strong conclusion can be drawn.

By system The role of predation has been heavily emphasized in marine
systems, particularly in the rocky intertidal (e.g. 22, 98, 100, 117, 133, 134,
135, 137), and in freshwater, particularly in lakes (e.g. 14, 58, 82, 207). In
contrast, the importance of predation has not been emphasized as often in
flowing water systems or on land. Is predation really less important in lotic and
terrestrial systems, or have lotic and terrestrial ecologists simply ignored the
evidence at hand?

Predation may indeed be somewhat more important in rocky intertidal and
lentic systems than elsewhere (Table 6). Predator manipulations have effects
more frequently in both the rocky intertidal system and in lakes than in other
systems. In addition, marine systems in general show larger effects of predator
manipulations than do other systems. The marine intertidal system appears to
stand out as showing stronger effects of predation than any other system.
Notice, however, that the difference between the various systems in frequency
and magnitude of effects is not striking. Thus our survey provides a hint (but not
a strong suggestion) that predation paradigms emerging from the intertidal or
from lakes may not hold as well elsewhere because predation is not as strong
elsewhere. .

Why does predation seem to be more important in the intertidal and in lakes
than it is elsewhere? Our survey did not gather the information required to
address this question rigorously. Although cross-correlations could be respon-
sible, we suspect that the answer lies in the lower structural heterogeneity
typically found in these habitats. Compared to other systems, the openwater
habitat of lakes and the rocky surfaces of the intertidal system are generally
thought to be structurally simple. Both theory and data suggest that structural
complexity reduces the effectiveness of predation. In a later section, we discuss
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some experimental field studies that directly address the effects of structure on
predation.

By predator trophic level In one of the most widely cited ecological papers of
the 1960s, Hairston, Smith & Slobodkin (57) suggested that (a) plants are not
herbivore-limited, but that they compete; (b) herbivores are not food-limited
but are limited by carnivores; and (c) carnivores, in turn, compete for limited
animal food. After some serious debate concerning the logic behind these
generalities (46, 124, 174), researchers let the ideas fade from the forefront
until a recent revival in the competition reviews of Schoener (167) and Connell
(24; see also 56a, 168a). In the current context, the Hairston, Smith & Slobod-
kin (hereafter termed HSS) predictions are that (a) herbivore manipulations
should have relatively little effect on plant communities; (b) primary carnivore
manipulations should have a strong effect on herbivores; and (c) secondary
carnivore manipulations should have a weak effect on primary carnivores. We
emphasize that the HSS hypothesis was originally designed to fit terrestrial
environments (“the world is green” applies more obviously on land than
underwater). It may be somewhat unfair (though instructive) to test it with a
data set dominated by data from aquatic systems (56a).

In a similar vein, Menge & Sutherland (117; hereafter MS) predicted that
predation should be more important on lower trophic levels, i.e. that the effects
of experimental manipulations on prey communities should decrease as we go
from herbivores to primary carnivores to secondary carnivores. The two sets of
hypotheses make opposing predictions concerning the relative effects of herbi-
vores and primary carnivores. The ranking of their effects on prey should be,
according to HSS: herbivore < primary carnivore; according to MS, herbivore
> primary carnivore. Chance, of course, would predict no overall difference
between the effects of manipulations of herbivore vs primary carnivore.

Our survey provides strong support for the predictions of Menge & Suther-
land (117). The ranking for the frequency of significant effects is herbivore >
primary carnivore > secondary carnivore. All three are significantly different
from one another. For the magnitude of effects, the ranking is herbivore >
primary carnivore = secondary carnivore. The combined effect strongly sug-
gests that herbivores have stronger effects on plant communities than carni-
vores have on animal communities.

Interestingly, a breakdown of trophic level analyses by system shows that the
trend predicted by MS appears to hold in all five systems (Table 7). Conversely,
the HSS prediction that herbivores should have a weaker effect than primary
carnivores is not upheld for any system. But since freshwater ecologists have
manipulated herbivores only rarely, the crucial test of MS versus HSS pre-
dictions could not be done. Nonetheless, the overall consistent tendency for
lower trophic levels to have larger effects on their prey than do higher levels is
in striking agreement with Menge & Sutherland (117).
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Table 7 The proportion of studies showing any significant effects and large significant effects as a
function of predator trophic level and system (%)

Effect Large
Primary Secondary Primary  Secondary
System Herbivore carnivore carnivore Herbivore carnivore  carnivore
Intertidal 61.7 >* 57.8° 842 > 70.1°
(173)¢ (116) (120) 67
Other marine 590 > 40.7° 95.1 68.4°
(144) (199) (82) (€0
Lotic 667 > 493 72.7 75.0
(42) (134) (22) (95)
Lentic 73.0 64.2 61.3 55.2
(163) (53) (106) (29)
Terrestrial 632 > 533 > 286 74.1 61.1
(174) 45) (49) (112) (36)

Results of G-tests; > indicates the contrasts are significantly different.
SAll carnivores pooled.
“Numbers in parentheses are sample sizes.

By prey and predator taxa Several authors have suggested that predators
should have a stronger effect on prey of smaller size (e.g. 22, 24, 167). Connell
(24) and Schoener (167) tested the competition corollary of this prediction by
comparing vertebrates and invertebrates. Unfortunately, we cannot perform an
analogous comparison because virtually no studies have manipulated predators
of vertebrate prey.

Although we did not analyze the effects of prey taxa, we did look at patterns
relative to predator taxa. Predator taxa did not significantly influence the
frequency of predation effects. However, nonarthropod invertebrates had larg-
er effects than did arthropods or vertebrates. To our knowledge this had not
been previously predicted or noticed. Unfortunately, this trend is at least
partially explained by a cross-correlation with system type and predator trophic
level. Of the comparisons involving manipulations of nonarthropod in-
vertebrate predators, 99% were performed in marine systems. These are pri-
marily experiments involving molluscan (e.g. limpets, chitons, snails) and
echinoderm (e.g. sea urchins) herbivores, although several classic carnivore
experiments (e.g. Paine’s studies of Pisaster) are also included. We suspect
that nonarthropod invertebrates are not unusually effective predators but that
they appear so because they are often herbivores (recall that herbivores are more
effective than carnivores in every system) in systems with relatively few prey
refuges. Further inferences on this question will require more experiments on
nonarthropod invertebrates outside the marine environment and appropriate
statistical analysis for teasing apart correlated variables in multiple contingency
tables.
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Byresponse type  The above analyses pooled data examining a number of very
different prey characteristics ranging from community traits, such as species
diversity, to population size or individual fitness parameters. Only for popula-
tion size were there sufficient data to allow analyses using exclusively that
response type. Qualitative trends using only the data on prey population size do
not differ substantially from those discussed above.

Differences among response types in the frequency and magnitude of preda-
tion effects are shown in Table 6. Studies addressing population size do not
yield significant effects as often as do studies addressing community or in-
dividual prey responses. Community and population responses may differ for
two reasons: (a) a community response can result when only one or a few of the
prey species respond strongly; or (b) consistent but nonsignificant population-
level responses can yield significance in a more powerful test at the community
level. That populations do not appear to respond as frequently as do the
individuals within them probably reflects a bias among investigators. When
monitoring population sizes, ecologists often include all populations captured
by a given sampling technique without regard to whether the species appear to
be affected by predators. This is a relatively unbiased means of choosing the
groups to be examined. However, when studying individual prey responses to
predators, practical limitations usually dictate that the investigator concen-
trate on one or a few prey species. If these species were chosen at random,
the frequency of response for population and individual prey parameters
should be similar; that is, changes in prey population size are usually associ-
ated with some change in individual fitness parameters, and vice versa. That
individual-level studies show a higher frequency of response suggests that
investigators choose (consciously or not) to do detailed studies on prey
that appear to be affected by predators. This bias is not surprising and not
unwise but it does perhaps yield an inflated impression of the importance
of predation.

By experiment type This analysis addresses some potentially important
methodological questions. Is the apparent importance of predation affected by
whether the manipulation involves predator removal or addition, or fenced or
unfenced conditions?

Our a priori guess was that removal experiments would yield smaller effects
than addition or stocking experiments. For example, if natural predator densi-
ties are low, then predator removals might have no effect. However, predator
additions or stocking at higher than natural density might still show an effect.
We further reasoned that fenced enclosures of predators would result in particu-
larly strong predator effects. Predator enclosures often use unnaturally high
predator densities (at times, enclosures are small enough that even one predator
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is an unnaturally high density) and also prevent predator dispersal. The latter
may force predators to feed in areas from which they would normally disperse.

Neither of these notions was upheld (Table 8). Although removal ex-
periments showed a lower frequency of effects (as predicted), they also resulted
in ahigher frequency of large responses. These offsetting trends suggest that the
overall importance of predation does not differ substantially between addition
and removal experiments. The comparisons of fenced versus unfenced ex-
periments also showed significant trends but in a direction opposite to that
predicted. Both enclosures and exclosures of predators yielded weaker preda-
tion effects than did experiments with no fencing. We know of no obvious
explanation for this result.

To summarize: (a) Predation effects did not differ among latitudinal zones.
(b) Predation appears to be more important in the marine intertidal and in lakes
than in other systems. (c) Herbivores have greater effects than do carnivores.
This concurs with the predictions of Menge & Sutherland (117) but not with
those of Hairston, Smith & Slobodkin (57). (d) Nonarthropod invertebrate
predators have larger effects on their prey communities than do other taxa, but
this might be due to cross-correlations with the marine system and with
herbivory. (e) The overall importance of predation appears to be lower when
fencing is used (though we can offer no plausible explanation for this).

UNEXPECTED EFFECTS  Some workers have defined predation as a “negative-
positive” interaction, because predators are expected to have a negative effect

Table 8 The proportion of comparisons yielding signifi-
cant effects and large significant effects by experiment type

(%)
Type of experiment Effect Large
All addition-stocked >;‘63.4 470)*° I} 65.9 (270)
All removal 156.0 (895) | 75.8 (447)
All fenced >Ik53‘6 (995) L 70.0 (466)
All unfenced 171.6 (370) 1 76.1 (251)
Addition-stocked
Fenced L58.4 (334) 1 69.5 (174)
Unfenced 175.7 (136) I 59.4 (96)
Removal
Fenced >!‘51.3 (661) L 70.2 (292)
Unfenced 169.2 (234) | 86.5 (155)

“Numbers are total number of comparisons.
®Broken vertical bars indicate contrasts that were made; asterisks
indicate comparisons that were significant.
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on prey and prey are expected to have a positive effect on predators (e.g. 76,
159). For the present analysis, an unexpected effect occurs when predators have
a positive effect on prey. This includes cases where predators cause an increase
in prey feeding or growth rate, survivorship, or reproduction that increases the
population size of one prey species or of all prey species summed, or increases
the diversity of prey.

Unexpected effects probably occur when positive effects through indirect
pathways override the direct negative effect of mortality caused by predation.
Two positive indirect effects of predators have often been mentioned. A
keystone predator effect (133) takes place when a predator reduces the density
of the competitively dominant prey to the point that poor competitors are
released from the negative effects of competition. Although this concept is
usually applied to cases where predators increase prey species diversity, we will
use it to include any positive effect on prey via release from competition. A .
three-trophic-level effect occurs when a top predator consumes a middle-level
predator and thus releases the prey at the bottom trophic level from in-
termediate-level predation. For example, a vertebrate predator might consume
large numbers of invertebrate predators to the point that invertebrate prey enjoy
a positive effect.

These two mechanisms clearly have similarities. In both cases, predators
have a negative effect on a prey species A that has negative effects on another
prey species B. The product of these two negative effects is an indirect positive
effect. The indirect positive effect is more likely to outweigh the direct negative
effect of predation if (a) predators prefer species A (e.g. the competitive
dominant) over species B (e.g. 39, 98, 133, 134, 135, 190); (b)predation
intensity is not too strong (e.g. 1, 47, 59, 98, 138); and (c) species A (the
competitive dominant or the middle-level predator) has potentially strong
negative effects on species B in the absence of the predator (1, 141).

In our survey 40% (54/135) of all studies yielded some unexpected effects
and 24.7% (190/770) of all relevant comparisons showed unexpected effects.
Unexpected effects did not tend to be large (by the factor-of-two criterion) as
often as did expected effects—76.0% (417/549) of expected compared to
59.5% (100/168) of unexpected effects were large, G = 16.40, p < 0.01.
Nonetheless, unexpected and presumably indirect predator-mediated effects
appear to be common. The frequency of unexpected effects varied with re-
sponse type, latitude, system, predator trophic level, and predator taxa (see
Table 9). Although some theory concerning indirect effects has been developed
(e.g. 65, 81, 82, 89, 90, 191), most of the patterns we observed are trends in
search of an explanation.

By response type Total prey abundance stands out as having fewer un-
expected effects than do other response types. This seems reasonable. Whereas
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Table 9 The proportion of comparisons yielding unexpected effects (%)

Classification Unexpected Classification Unexpected
Latitude Predator trophic level
Temperate l 25.5 (710)*® Herbivore 17.2 (331)
Tropical | 11.4 (44) Primary carnivore J‘ 31.3 (278)
Polar 25.0 (16) Secondary carnivore 11 20.7 (179)
System Response type
Intertidal Ll 24.7 (190) Species diversity l 29.7 (37)
Other marine | 9.9 (171) Total prey abundance Il 3.7 (448)
Lotic | l 40.9 (93) Population size 1] 24.6 (448)
Lentic 11} 39.7 (156) Individual parameters Il 20.8 (159)
Terrestrial 16.9 (160)
Predator taxon
Vertebrate 39.4 (269)
Arthropod ’L 13.5 (230)
Other invertebrate 1120.2 (262)

“Numbers in parentheses are sample sizes.
®Broken vertical lines indicate contrasts that were made; asterisks indicate comparisons that are significant.

predators can indirectly benefit some prey by consuming their enemies, it is not
clear what circumstances would result in predators having an indirect positive
effect on the total abundance of prey. Only one study showed such a positive
effect on total prey abundance (55), and this only occurred during the fall and
winter when bluegill predation on macroinvertebrate prey was relatively low.
The mechanism might have been the three-trophic-level effect, a case in which
bluegills consumed enough invertebrate predators to allow a large increase in
invertebrate prey. In the spring and summer when bluegills feed more actively,
they either have no effect on their prey or they reduce total prey abundance (29,
55).

Most of the ideas on indirect effects revolve around the keystone predator
effect on species diversity. The usual notion is that if predators prefer the
competitive dominant, then. the relationship between diversity of prey species
and predation intensity should be “hump-shaped”; that is, at low intensities
increasing predation prevents competitive exclusion and allows more species to
coexist, but at high intensities, predation itself drives prey species extinct. This
idea was primarily developed from studies in the marine intertidal, and the
suggestion has even been made that the effect only applies to systems with
immobile, space-limited organisms (150, 168). Many cases of keystone effects
on diversity indeed come from marine intertidal studies (e.g. 98, 133, 134, 135,
138), or studies of herbivory on terrestrial plant communities (e.g. 59, 71).
However, in our survey, three cases of keystone predation clearly did not fit the
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immobile, space-limited description. Bluegill sunfish can have positive effects
on the diversity of macroinvertebrate prey (55); Thorp & Cothran (184) re-
ported a “hump-shaped” relationship between the density of an invertebrate
predator (odonates) and macroinvertebrate prey diversity; and zooplankton can
have a positive effect on phytoplankton diversity (112).

Other trends Because we have few clear explanations for the other trends in
the frequency of unexpected effects, we simply provide a brief list:

1. Unexpected effects are far more common in temperate than tropical regions.
This is probably a premature assessment since so few experimental studies
have been done in the tropics.

2. Unexpected effects are far more common in freshwater and intertidal sys-
tems than elsewhere. These are also the systems where indirect effects have
been noticed and emphasized.

3. Concerning predator trophic level, the ranking of the frequency of un-
expected effects is primary carnivore > secondary carnivore > herbivore.
That herbivores have fewer unexpected effects on their prey may reflect less
clear-cut competitive hierarchies among plants or that herbivores can only
have positive effects on prey through the keystone effect and not through the
three-trophic-level effect.

4. Vertebrates have unexpected effects more frequently than do invertebrates.
This may occur because vertebrates are more often at trophic levels
high enough to be able to have both keystone and three-trophic-level
effects.

5. The above trends may be confounded by cross-correlations. Recall that
manipulations of vertebrates and carnivores are overrepresented in freshwa-
ter studies. Thus only one causal mechanism may be necessary to explain
the fact that all three of these categories have frequent indirect effects.

MEDIATING FACTORS A wealth of theoretical literature exists on factors that
should mediate the effects of predators on prey (see 60, 125, 182 for reviews).
Here, we briefly review some field experiments that bear on two of these
factors: structural heterogeneity and the severity of the environment.

Structural heterogeneity Structural heterogeneity can, in theory, affect pred-
ator-prey interactions in many different ways. This literature is outside the
scope of this review. We do, however, note two widely discussed mechanisms.
First, heterogeneity can provide spatial refuges, i.e. places where predation risk
is reduced. Although the effect of refuges on predator-prey coexistence can
vary depending on details of the patterns of refuge use (e.g. 113, 125, 160,
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171), refuges by definition reduce predator efficiency (at least locally) and
should generally reduce the overall effect of predators on prey.

Even in the absence of actual spatial refuges, structural heterogeneity can
influence the predator-prey interaction by creating transient refuges. Different
mechanisms have been suggested, but the basic idea is that in a structured
environment prey can find momentary refuge in patches where predators are
temporarily rare or absent (e.g. 30, 50, 67, 125, 145).

Our survey includes a number of studies that address the influence of spatial
structure or heterogeneity on prey responses to predators. Two similar studies
directly manipulated structure. Both (29, 55) examined the influence of struc-
ture (real or artificial macrophytes) on the effects of bluegill sunfish on mac-
roinvertebrate prey. In both studies, prey biomass increased with increasing
levels of structure. Gilinsky (55) also documented an increase in species
richness in more highly structured environments. The mechanism was probably
that structure reduced predator foraging rate. Laboratory studies have shown
that fish forage less efficiently in structurally complex environments (e.g. 26,
162, 197). Interestingly, Crowder & Cooper (29) showed that bluegill growth
rate was highest at intermediate rather than low levels of structure. Presumably
the increased prey density at intermediate levels of structure more than com-
pensated for the decrease in feeding efficiency.

Three other studies that did not experimentally manipulate refuges nonethe-
less showed that refuges enhance prey persistence. Quammen (149) in-
vestigated the effects of fish and shorebirds on mudflat invertebrates. She found
that because sand interfered with shorebird feeding, shorebirds did not affect
total prey abundance at sites with high sand concentration. Menge & Lubchen-
co (116) and Lubchenco (100) observed that many sessile organisms in the
rocky intertidal system only persisted in crevices. A more complete review of
field studies of refuges can be found in McNair (113).

Several experimental studies showed that prey increased their use of refuges
in the presence of predators (27, 49, 170, 201). Although none of these studies
directly compared predation rates in the presence and absence of refuges,
refuges probably enhanced the coexistence of predators and prey (see also 171).

In summary, we can say that although the existing theoretical literature
addresses numerous ways in which spatial structure and heterogeneity can
affect predator-prey interactions, field studies to date have primarily addressed
the simplest mechanism: that spatial refuges are actively used by prey and that
these refuges enhance prey persistence by reducing predator efficiency. In
addition, although most of the theory addresses the stability of the interaction,
virtually no field studies include analyses at this level.

Environmental stress It has often been suggested that the importance of
predation decreases with increasing environmental stress (e.g. 22, 63, 117,
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204). This generalization assumes that stress reduces average predation rates
per prey more than it reduces average growth rates of the prey population. If
stress inhibits prey growth more than it inhibits predation, then predation
should actually be more important in stressful environments.

Our survey yielded some studies that showed a negative relationship between
stress and predator importance (55, 94, 114, 116, 176) and other studies in
which the relationship was positive (31, 80, 96, 186). In some cases, the type of
stress studied involved relatively abrupt disturbances, such as storms and
habitat destruction (114, 176); in other cases the stress was relatively con-
tinuous, such as extreme temperatures or moisture levels (55, 94, 96, 186).
Some studies compared different sites (80, 94, 96, 114, 116, 176), while others
compared different seasons at the same site (31, 55).

Despite the low sample size and broad range of study situations, we noticed
two patterns that may prove general. In rocky intertidal studies of invertebrate
predators, wave shock decreases (101, 114, 116), whereas desiccation stress
increases, the importance of predation (31, 101, 186). Apparently wave shock
affects motile predators more than the generally sessile prey, whereas desicca-
tion has a greater effect on prey than on Predators (In these examples, prey
were often plants that are relatlvely mcapable of behaviorally regulating their
exposure to desiccation.)

In a given environment, vertebrate predators may be less affected by stress
than are invertebrate predators. In the intertidal system, as mentioned above,
wave shock decreases the importance of invertebrate predation, but it may
increase the importance of vertebrate predation (80). However, Keller (80)
emphasized that this effect is not consistent and may even result from a caging
artifact. More interestingly, Louda (94, 96) suggested that for two congeneric
plants in the same general locations, insect predation decreased whereas ver-
tebrate predation increased in importance in more stressful environments.

In conclusion, environmental stress can either increase or decrease the
importance of predation. The outcome depends on the relative effects of stress
on predation rates and on prey growth rate. To a large extent this depends on the
efficacy of each group’s adaptations to the particular type of stress. Both a
larger survey of comparative data and some experimental manipulations of
stress should help to identify general patterns and contribute to theoretical
development on this question.

PREDATION VERSUS COMPETITION

Although predators usually have important effects, the key controversy con-
cerns the relative importance of predation and competition, rather than the
importance of predation per se. We approach this issue from two directions.
First, we statistically compare the frequency and magnitude of effects in
surveys of predation and competition experiments. These surveys, however,
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include different techniques, different locations, different systems, etc. Our
second approach is to review 17 studies that have examined both predation and
competition via experiments. We complete this section with some suggestions
on protocols for evaluating the relative effects of these two factors.

A Statistical Survey

Both predation and competition have significant effects on prey individuals,
populations, and communities in the great majority of the studies examined:
predation: 95.6% (this study); competition: 90.0% (167). To do more detailed
analyses, we reevaluated a subsample of the studies of competition. We did this
both because our methods differed somewhat from those of Connell (24) and
Schoener (167), and in particular because they did not attempt to evaluate the
relative magnitude of the effects. We took the 72 studies cited by Connell (24)
and reanalyzed them using the methods described earlier (simply replacing data
for “predator” with “competitor removed”).

Table 4 shows the distribution of response types addressed by studies of
predation and competition. It is interesting that although many studies purport
to examine the effects of competition on prey communities, only 14 of the 164
studies cited by Schoener (167) actually looked for the effects of competitor
manipulations on a community parameter. In contrast, of 139 predation ex-
periments, 19 address effects on species diversity and 30 on total prey abun-
dance. The other end of the scale is also interesting. Competition studies
address effects on individual-level parameters (growth, fitness, feeding rate,
behavior) far more often than do predation studies. This may purely reflect a
difference in investigator viewpoints or it may be a hint that predator man-
ipulations have more far-reaching effects on their communities. The latter idea,
of course, cannot currently be tested because competition studies have rarely
addressed community parameters.

Using our 1412 predation comparisons and 594 competition comparisons
drawn from studies in 24, we evaluated the relative frequency and magnitude of
effects caused by predator and competitor manipulations. Table 10 shows that
predators have both more frequent and stronger effects than do competitors.
This is almost entirely explained by the fact that this survey suggests that
herbivory is more important than competition for terrestrial plants. Only two
other trends show predation to be more important than competition: (a) in the
intertidal system, predators have larger (but not more frequent) effects than do
competitors; and (b) in lakes, predators have more frequent (but not larger)
effects than do competitors.

Experimental Studies of Both Predation and Competition

Though many of the investigations reviewed considered both predation and
competition, only 17 of the 139 experimental analyses of predation in-
corporated density manipulations of both predators and potentially competing
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prey within the same study (34, 35, 40, 71, 75, 80, 99, 100, 103, 114, 129,
134, 141a, 175, 178, 203, 205—see Tables 2 and 10). Possible reasons for the
rarity of such studies include their difficulty of execution and perhaps the fact
that the stridency of the competition vs predation controversy has only recently
become conspicuous in the literature. In the remainder of this section, we
characterize the few competition-predation studies that have been carried out,
briefly summarize their results and implications, and suggest some guidelines
for the design of future experiments.

Experiments in 10 of the relevant 17 studies were performed in rocky
intertidal systems (34, 35, 75, 80, 99, 100, 103, 114, 134, 178), usually with
echinoderm or gastropod predators or herbivores, and with molluscs or algae as
the manipulated competitors. Most of these used cage enclosures or exclosures;
in others, at least some exclusions were initiated and maintained by hand
removal (35, 75, 134, 178). Their results generally ascribe important in-
fluences to both competition and predation, though 3 seem to attribute some-
what more importance to competition (99, 100, 114), and 1 (80) somewhat
more to predation. A relatively thorough investigation of two subtidal bivalves
(141a) revealed that predation by gastropods and crabs is more important than
interspecific competition between the bivalves but indicated that intraspecific
competition is particularly strong. ’

Of the 17 studies, 5 examined lentic freshwater systems—3 with plankton
manipulated in large containers (40, 130, 175), and 2 with larval amphibians in
enclosures (203) or in replicated tanks (205). Again, the consensus seems to be
that both competition and predation were important (but see 40). In the exten-
sive amphibian experiments (203, 205), predation and both inter- and in-
traspecific competition were quite important and interacted in complex ways.

A single terrestrial study, of ant and rodent seed-predators and annual desert
plants (71), detected strong effects of competition (though all plants were
manipulated together) and especially of predation (both by ants and by rodents).

Thus in these few examples featuring manipulation of both predator and
competitor, both appear consistently and comparably important, as measured
by the responses of one or more of the interacting populations. But many of the
most interesting and significant questions to be asked about predation and
competition become tractable only with carefully tailored experimental de-
signs. We illustrate this below by considering some general questions and some
designs of increasing complexity.

The minimal design for evaluating the relative importance of predation and
competition requires three combinations—normal predators/normal com-
petitors; no (or low) predators/normal competitors; and normal predators/no
competitors. All 17 of the studies discussed in this section included these
treatment levels. This design does not address interactions between predation
and competition, however; that requires a fourth treatment level—no predators/
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no competitors. Only 6 of the 17 studies included the full four-treatment-level
factorial design (i.e. 34, 71, 80, 99, 203, 205). In at least 3 (34, 71, 205), the
interactions were strong and central to a full understanding of the dynamics.

Inclusion of all 4 density combinations also allows for testing more complex
hypotheses, such as that predation may often overwhelm any detectable re-
sponse to competition in the absence of predators, or that predation can prove
indirectly beneficial to competing prey. A few of the predation-competition
field studies were both designed and presented to test such hypotheses (see
Table 11). A majority of these studies detected indirectly beneficial predation
(well-represented in the overall data set, too—see Table 9); examples con-
sistent with other hypotheses are also noted in Table 11. '

A still more informative design measures the responses of both (or all)
competitors to the appropriate combinations of competitor and predator pop-
ulations. Consider for example a predator species (P) and two competitor
species distinguished by being dominant (C) and subordinate (c) in the pred-
ator’s absence, grouped into six combinations: C, ¢, Cc, CP, cP, and CcP.
With this approach, some additional generalizations about the influence of

Table 11 Some experimental manipulations of both predators and competitors

Species-combination ranking for a tar-

get competitor® Interpretation Examples
Cr >CiCyq >CiP >CiCuP Pred.© > comp. > 0
Cr >CP >CiCy >C{CuP Comp. > pred. > 0 Sousa 1979¢
Lubchenco 1980
Cr =CCyq >CtP =CiCmP Pred. > 0 = comp. Keller 1983
Dodson 1974°
Cr =CtP >CiCy =C{CuP Comp. > 0 = pred.
Cr >CiCy >CiP =CCuP Pred. swamps comp. Wilbur et al 1983
Cr >CP >CiCy =CCuP Comp. swamps pred.
CiCyP >CiCyv; Crp >CiCy® Indirectly beneficial pred.® Neill 1984f
' Jara & Moreno
1984F
Dodson 19742
Inouye et al 1980°
Sousa 1979°¢
CCyP >C+P; Cr CP? Indirectly beneficial comp.® Dodson 19748

2Relative benefits to a particular competitor species (the “target competitor”) of four species combinations: Cy
includes only the target competitor species; CtCy includes both the target competitor and the other competitor
species (the “manipulated competitor”); CP includes the target competitor and the predator species; and CtCyP
includes all three species.

Unlike the others, these two rankings are not mutually exclusive (e.g. see the results of Dodson 1974).

“Pred. is predator; comp. is competitor.

9Most results.

¢Some results

No Cy treatment level; results were CtP > CtCyP > C1Cy.

2No Cr treatment level; the trend for one species was CtCyP > CiCy = CtP.
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predation on competition can be directly tested. Two of many possibilities
include the following.

1. Predation reduces or prevents interspecific competition (e.g. see 101 and
references therein). Let i (j) represent the response (e.g. density) of species i to
treatment-level j. For example, ¢ (cP) indicates the response by subordinate
competitors to the treatment level containing subordinate competitors and
predators but no dominant competitors. Then this hypothesis makes the follow-
ing predictions:

(a) c(Cc) < c(c)—subordinate competitors are inhibited by dominants in the
absence of predators.

b) c(Cc)le(c) < c(CcP)/c(cPy—introducing the dominant is less inhibitory to
the subordinate in the presence of predators than in their absence.

(c) if C(Cc) < C(C), then C(ec)/C(C) < C(CcP)/C(CP)—if subordinates
inhibit dominants in the absence of predators, then this inhibition also
should be reduced in their presence.

2. Predation tilts the balance between competitors. (This implies that the
dominant and subordinate competitors exchange roles in the presence of the
predator, though they are referred to here according to their relative success in
the predator’s absence.) From this hypothesis arise the following predictions:

(@) ¢(Cc) < c(c)—as in 1(a), subordinate competitors are inhibited by domi-
nants, in the absence of predators.

(b) C(CcP) < C(CP)—in the presence of predators, the former subordinate
species inhibits the former dominant.

(¢) ¢(Cc)lc(c) < C(Cc)/C(C)—with predators absent, introducing the other
competitor inhibits the subordinate more than the dominant.

(d) C(CcP)/C(CP) < c(CcP)/c(cP)—with predators present, introducing the
other competitor inhibits the former dominant more than the former sub-
ordinate.

Note that hypotheses 1 and 2, though making specific predictions based on
rather different conceptions of how predation and competition may interact, are
not mutually exclusive.

Only three studies from our data set (80, 203, 205) present sufficient
information from the minimal six treatment levels to test hypotheses 1 and 2 and
their relatives. One of these studies (205) agrees closely with hypothesis 1; none
is consistent with hypothesis 2. Both of these hypotheses deserve further
experimental scrutiny.

Strangely neglected in many investigations, including 11 of the 17 predation-
competition studies, intraspecific competition could be of critical importance
in understanding the dynamics of interacting populations (as in all five of the
investigations in which it was analyzed separately—S80, 141a, 175, 203, 205).
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In particular, the potential for coexistence of competitors in the presence or
absence of the predator may depend in part on the intensity of intraspecific
relative to interspecific competition. Further expansion of the design to eight
treatment levels (C, ¢, CC, cc, Cc, CP, cP, and CcP) permits this and related
hypotheses to be evaluated.

So far, we have not stressed the particularly rich possibilities for interactions
between (and within) size-structured animal populations. It is especially appro-
priate to mention this in the context of effects and interactions of predation and
competition, because relative size (reflecting both fundamental differences
between taxa and differences in degree of development or feeding history) may
often determine capabilities and susceptibilities to predation and competition.
Animals of similar taxa may tend to compete more intensively when of similar
sizes, but they may tend to prey on each other (mainly, the large eating the
small) when of different sizes (e.g. 203). Such size-structure effects apparently
extend broadly across systems and taxa—for example, freshwater fish (119)
and insects (6), marine bivalves (141), and terrestrial insects (180). See (200)
for a review.

In light of the need for additional experimental studies that simultaneously
analyze competition and predation (especially in nonintertidal systems) and of
the lessons to be learned from investigations to date, what factors deserve
consideration in the design of such experiments?

1. Factorial designs permit the detection and analysis of interactions between
factors such as different predators or intra- vs interspecific competition.
They also produce large (and often unmanageably large) numbers of treat-
ment combinations. Juggling this trade-off sensibly is central to any design
and must ultimately rest on biological insight and preliminary data.

2. When cages are necessary to maintain density manipulations, cage controls
(that mimic the physical effects of cages without the enclosure or exclosure
effect) can help to isolate cage effects from treatment effects. Un-
fortunately, this straightforward design concept is not consistently im-
plemented.

3. Studies based on easily manipulated organisms may require no caging (or its
analogues) and will expend less effort on controls, which thus permits more
emphasis on treatments or replication.

4. A truly quantitative assessment of the importance of predation and competi-
tion requires experiments initiated (and replicated) with similar designs in
different places at different times of year (see 101).

5. Though several densities of each manipulated population may be highly
desirable for clarifying details of the density-dependence of various in-
teractions, the effort may often be better spent on replication or on adding
more treatments (e.g. combinations of populations) to the design.
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In summary, the few experimental field studies involving manipulations of
both predators and competitors have mostly been carried out in rocky intertidal
systems; they suggest that both predation and interspecific competition are
generally (and about equally) important. Future studies should be designed to
detect intraspecific competition and interactions between predation and compe-
tition.

Predation, Competition, and Indirect Effects

Most empirical and theoretical studies on the effects of predators and com-
petitors emphasize direct effects. The direct effect of predation is prey mortal-
ity. The “direct” effect of competition is usually thought to come through
reductions in resource availability either by exploitation (using resources up) or
interference (restricting access to resources). However, predation and competi-
tion can also have two types of indirect effects on prey communities. We refer
to these as multispecies-related and life-style-related indirect effects.

Multispecies indirect effects occur when changes in a third species mediate
the effect of one species on a second species (or analogous higher-order
interactions). Examples include the “unexpected” and indirectly beneficial
effects of predation (see Tables 2, 9, and 11). We termed the mechanisms
presumed to be involved the keystone predator effect and the three-trophic-
level effect. In both cases, the overall effects of predators on prey are heavily
influenced by the predator’s effects on either a competitive-dominant or a
middle-level predator. By this definition, exploitative competition for living
resources is also an indirect effect: one competitor affects the other by reducing
the availability of a third species, the limiting resource. Few studies have
experimentally addressed indirect interactions (but see our section on Ex-
perimental Studies of Both Predation and Competition, above).

A second type of indirect effect concerns prey life-styles. Both predation and
competition can profoundly affect the morphology, physiology, chemistry, or
behavior of prey. Prey behaviors that may be affected include habitat use, time
of activity, foraging mode, diet (or analogous “behaviors” for plants), mating
system, and life history. Prey life-styles in turn determine prey encounter rates
with predators, competitors, and food. The two types of indirect effects are not
mutually exclusive. For example, a secondary carnivore can affect the degree to
which a herbivore’s life-style is influenced by a primary carnivore.

Many of the traits listed above are elements of an organism’s niche. Although
most existing niche theory assumes that niches are primarily determined by
competition, antipredator needs probably also have crucial effects on niche
characters (see 77, 172 for reviews). To date, many experimental studies have
looked at the effects of competition on niches, whereas relatively few have
examined the effects of predation (Table 4). Similarly, a vast theory exists for
the effects of competition on niche-related coexistence (e.g. 19, 197, 109). In
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contrast, ecologists have only begun to develop theory that attempts to explain
the coexistence of prey in terms of predator-influenced niches (“enemy-free
space,” e.g. 77, 147, 163). In most cases, probably both competitive (resource-
related) and antipredator needs affect niche characters (e.g. 38, 49, 91, 148,
154, 170, 201). This suggests that niche theory should incorporate both needs.
Further theory and data on the interacting nonlethal effects of predation and
competition on the life-styles of organisms, and thus indirectly on prey commu-
nity structure, should prove insightful.
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