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The distribution of algae is examined at several different scales. Juve-
niles are found to be in clumps which are randomly dispersed throughout the
community. Within these clumps there is a great wealth of pattern which may
be related to the substrate complexity either during settlement of propagules
or indirectly via grazing patterns. Fractal dimension analysis suggests that
this changes through time. After the recruits had settled for over three months
the substrate complexity was no longer found to be important to the fine pat-
tern of small scale clumping. We look at the spatial distribution of juvenile
algae and report on their fractal structure. [27] We speculate on underlying
mechanisms.
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The consideration of macroalgal distribution on different spatial scales has often
shown communities to be patchy. Agents responsible for this heterogeneity vary
according to the scale under consideration. A major factor controlling algal distri-
bution on a biogeographical scale is sea temperature, while local scale influences
are water movement, the topography of the coast, and the local flora and fauna
[42]. On a small scale the distribution of algae has rarely been examined and the
mechanisms responsible have only recently begun to receive attention [36].

For example, one feature of macro-algal communities is the restriction of algae
to hard substrata which provides suitable holdfast attachment. Suitable hard sub-
strata is often intermingled with sand areas resulting in patchiness [36, 5]. Abun-
dance estimates associated with high variances suggest that algae are clumped at
small scales [36]. Small scale clumping has been shown for several large domi-
nant macroalgae [10, 17, 34]. A study on showed clumping
at scales of 10, 20 and 40cm, only the last of which could be explained by vari-
ation in the physical environment [34]. It was suggested that the smaller scales
of clumping were due to biological factors, possibly associated with propagule re-
lease. However, these distribution analyses were restricted to mature macroalgae
and did not consider the patterns of juveniles.

While final communities may be very different to initial ones, this does not triv-
ialise the processes of recruitment or the early life stages of the algae. The consid-
eration of juvenile patterns may be important as the adult distribution may reflect
that of the spores [36]. In an attempt to understand the pattern of mature macro-
algal stands it must therefore be important to consider the pattern of the recruits—
that is, before many processes act to arrange them. One needs to address the issue
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of why algal propagules settle where they do in the first place.
Most analyses employed to assess plant distributions are based on testing for

non-random spatial distributions. These are conducted on scales of pre-selected
quadrat sizes, rather than exploring the distribution for its own scales of pattern.
Thus, only preconceived distributional patterns have been recorded [34]. Fractal
dimensions as an index of the distribution may be a useful tool to avoid the prob-
lem of forcing predetermined spatial scales on the vegetation [31, 26, 39, 25]. The
concept of fractals is based on the idea that an object may have similar detail over
a range of scales. Many methods are available to find fractal dimensions, most of
which are straight-forward to apply [39], although care is needed in the interpre-
tation. The fractal dimension is a measure of how the plants fill the space they
occupy.

The aim of this study was initially to determine the pattern of recruits and sec-
ondly to correlate this with the likely processes and/or physical attributes of the
system, in particular the substrate topography. The small scale pattern of juveniles
was followed for three months after they were first visible to determine whether
there was any change in the pattern. Spatial patterns of recruits on natural sub-
strates were also compared to that of flat settlement plates. The comparisons were
undertaken to determine whether there was any difference in the patterns which
could be attributed to topographical details. Patterns were analysed by both con-
ventional methods (a nearest neighbour analysis) and also by computing the fractal
dimension. The distribution of the adults were also examined. The small scale pat-
terns of the recruits on the natural substrate and settlement plates were analysed by
calculating the Hausdorff fractal dimension.

It was noted that the settlement patterns were not evenly spread over the areas
mapped and that while some recruits were tightly clumped others were more iso-
lated. A multi-fractal analysis of the patterns was also undertaken and is compared
to that of homogeneous fractal distributions of similar dimension. The detected
multi-fractal nature of the juveniles may be due to any of a variety of mechanisms.
However, we argue that one possibility is through the action of predators of a hi-
erarchy of sizes.

Throughout the body of this paper, discussion of mathematical analysis is at a
superficial and informal level in order to concentrate upon the application. Math-
ematical details are relegated to the Appendix.

The field site for this experimental study was at Cape Jervis, South Australia (Fig-
ure 1). The study site is approximately 100m from the shore at low tide at a depth
of 5m to 6m. The substrate at the site is a mosaic of rocky platforms intermin-
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Figure 1: location map of study site which is shown by the small arrow.
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2.1 Clump distributions

2.2 Individual plant distributions

Cystophora spp.
Posidonia Amphibolis

et al

Cystophora expansa
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gled with sand patches. The community on the rock platforms is fucoid domi-
nated (particularly ), while the sand areas are dominated by the
seagrasses and . The recruitment of fucoids were observed
to be in clumps throughout the community. These “clumps” varied in shape, size
and position. The following surveys were undertaken to determine the distribution
of “clumps” of recruits in the community and also the small scale distribution of
the recruits within the clumps.

A nearest neighbour analysis was utilized to determine the distribution of recruits
and adults within the community using the method utilised by Chapin [8].
Points were chosen on the substrate randomly. The distance from this random point
to the nearest clump of recruits was measured and the distance from that clump
to its nearest neighbouring clump was also measured. This procedure was also
repeated for mature algal plants. The ratio of point-plant : plant-plant distances
were determined by repeating this a minimum of thirty times for each site to see
if the algae exhibited a clumped (ratio ), random (ratio ) or regular
(ratio ) distribution [1].

Five m clearances were made by removing algal material in late September
1991. These clearances were made during the recruitment season for the dominant
species (Areschoug), Womersley [40]. The clearances were
intended to eliminate the variation of competition between recruits at the centre
of the clearances and the surrounding community. A concurrent experiment was
conducted to determine the effects of competition between recruits and the mature
algal community (Emmerson and Cheshire, in prep.). Recruitment appeared to be
inhibited on some regions of the substrate (personal observation) and we felt that
it would be better knowing that recruitment was actually possible into the area by
clearing the algal material and monitoring recruitment into those areas. No visi-
ble recruits were present in these areas. At the time of the clearances, a series of
settlement plates were also placed into the system.

A “fucoid mapper” was developed to map the spatial pattern of recruit individ-
uals. It consisted of a clear perspex board (22.5cm 28.5cm 1.0cm) with legs in
each corner which could be placed directly above the substrate allowing the ob-
server to locate the position of individuals below. A clear acetate sheet was placed
on the upper surface of the perspex and held in position with bulldog clips, the po-
sition of each juvenile was recorded on this sheet. Spatial patterns of randomly
selected areas of juveniles near the centre of the clearances were mapped.
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Often squares of side are used instead of discs—it makes no difference at our level of
analysis.
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Notes were made of biological and topographical features in the areas mapped.
The mapped sites were ranked according to their substrate topography. The sites
were ranked from simple through to complex, where simple refers to a flat site and
complex referrs to those substrates that were highly variable. At each mapping
exercise the settlement plates were considered to be the simplest substrates present
as they were flat surfaces.

The raw maps from the mapping exercise were then traced onto clean sheets
and the nearest neighbour index calculated as before. The average distance be-
tween individuals was also calculated. Maps were made from the time the recruits
were first visible to the naked eye (78 days after clearances) with three more read-
ings taken at approximately monthly intervals. Maps were made on days 105, 143
and 173 after clearing. Six maps were made on the natural substrate within the
clearances and three settlement plates were mapped for each mapping exercise.
Only one specific site was mapped continuously throughout the duration of the sur-
vey due to the difficulty in relocating such a small area under water.

The fractal dimension of a pattern of points expresses that the structure of the pat-
tern is strongly similar over a wide range of length scales, whether the points rep-
resent plants as herein, clouds, ore bodies, rivers or aggregations [27]. In order to
discern such a similarity we have to explore the pattern over many scales of length,
and in particular to see how the plants are clumped together on the different scales.
Choosing a length-scale , we may find how many discs of radius , say ,
must be used to completely cover the set of points. In essence this determines that
there are “clumps” of plants on a length-scale . The basic tenant of fractal ge-
ometry is that over a wide range of lengths-scales this count varies with according
to a power law

(1)

where is called the or sometimes the
[27].

This definition of dimensionality agrees with the ordinary Euclidean dimen-
sion when it is applied to Euclidean objects. For example, the number of discs
of radius needed to cover a line or curve segment of length is approximately

which gives a fractal dimension of . Also, a single
point only ever needs discs to cover it and so has a fractal dimension
of .
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Experimental data typically consists of a finite number of plants, say (see
Figure 11 for example); the scaling law (1) can only hold over a finite range of
length-scales. On very small length-scales, smaller the the minimum plant separa-
tion, , and the set looks like a set of distinct -dimensional points.
On large length-scales, larger than the largest separation of the plants,

, and the set looks like one -dimensional “blob.” It is only on the intervening
length-scales that it is possible to discern a fractal nature; it is typically agreed that
a power law (1) needs to hold over at least a decade before claiming that experi-
mental data has a fractal nature.

As explained further in Appendix A.1, we plot versus and seek
to find a straight line fit of slope over a range of length-scales sandwiched be-
tween two horizontal regimes. The horizontal fit for length-scales smaller than
the minimum resolvable exhibits the discreteness of the data; the horizontal fit for
large length-scales displays the finite size of the experimental recording. When a
straight line of slope can be fitted to the intervening length-scales, then the data
is said to have a fractal dimension of .

The canopy plants were found to have a clumped pattern; however, it was noticed
that many of these algae had fused holdfasts. The survey was repeated treating
those individuals with fused holdfasts as a “canopy unit.” The degree of clump-
ing and the variance associated with it decreased. Of the total 180 canopy plants
considered 37.2% formed “canopy units”. A large proportion of the canopy plants
within the community have holdfasts sharing the same point of attachment. It is
unclear whether this sharing of the holdfasts occurs when both algae are settling
or whether recruits are able to settle on the holdfasts of algae which are already
growing. It was observed that many recruits had the same holdfast attachment po-
sition.

The clumps of recruits were found to be randomly distributed throughout the
community. At all times the nearest neighbour analysis found the distribution of
juveniles to be clumped. The degree of clumping remained constant through time
(Table 1) The average distance between individual juvenile plants was similar un-
til the final reading at 173 days. There was no difference between the settlement
plates and the natural substrate.
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Table 1: nearest neighbour table.

Figure 2: digitised distribution of 197 juvenile fucoids on one of the perspex plates
at time 1. The axes’ units are centimetres. As shall be discussed in the section on
multi-fractals, in this and the three subsequent figures the different symbols denote
different estimated scaling exponents : , ; , ; ,

; , ; , ; and , .

During the course of the experiment 35 drawings were made of fucoid sites. The
number of fucoids in any one site varied from 267 down to as few as 20. Although
all the data was analysed, we concentrate on those sites with over 80 plants as we
felt that the results for fewer plants were unreliable. Of these, we present four as
being representative of those that show a fractal nature. The discretised data for
the selected sites is plotted in Figures 2–5. Each plotted symbol represents one
holdfast of a plant or a group of plants sharing the same holdfast. The different
symbols used are irrelevant to this section; they are discussed in Section 4.

Observe that although the fucoids appear fairly randomly spread, in some sites,
such as shown in Figure 3, there are “bald” patches, while in other sites, such as in
Figure 4, many of the fucoids appear to be distributed in roughly “linear” features.
One view is that it is the pattern of “bald” patches of many sizes, or the pattern of
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Figure 3: digitised distribution of 267 juvenile fucoids on the site at time 1.
The axes’ units are centimetres.

Figure 4: digitised distribution of 104 juvenile fucoids on the site at
time 1. The axes’ units are centimetres.
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Figure 5: digitised distribution of 88 juvenile fucoids on the site at time 2.
The axes’ units are centimetres.

linear features over many sizes, that gives the distribution its fractal nature.
One problem with this study was the ranking of the substrate complexity, which

was largely subjective, based on observed features. It is recognized that processes
acting on a smaller scale than that which can be observed may be important to
the settling and survival of individuals. Another difficulty was the relatively small
number of plants in any one site, in the range 20–267 plants, with which to attempt
to make reliable dimension estimates.

The estimated fractal dimensions associated with the spatial distribution of ju-
veniles ranged from 1.26 to 1.91. Most of the distributions were of a fractal na-
ture. For the first three months, a discernable fractal nature was found in all but
one of the maps. At the last reading only 4 of the 9 maps had a fractal nature. This
may have been a consequence of the small number of plants typically present at
the final reading. The fractal nature typically held over the range cm to

cm (values represent mean % confidence interval): the upper limit
certainly represents the overall size of each mapped region (due to the size of the
mapper) and so this fractal nature may well extend to much larger length-scales;
the lower limit may be due to errors in mapping the locations of the plants or to
their finite size giving rise to a cut-off. The range over which the fractal nature
held did not change through time.

On the perspex plate, Figure 2, the digitised data is a reasonably accurate ex-
pression of the fucoid distribution. However, on the rocky sites, the underlying
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Figure 6: plots of versus for the data in Figures 2–5 (the curve
for the data has been displaced by 0.2 to the right for clarity). The slopes
of these curves in the region , that is over the length-scales
from about 0.5cm to 10cm, indicate a fractal nature with dimensions of ,

, and , respectively.



s sig:

s

s s

=1 =2

=3 =4

What about
time=2?.

3.3 Other observations

4 Multi-fractal nature

F ; : F ; :

F ; : F ; :

r : r : � : :

r :

r : r :

: :

Fractal patterns of seaweed settlement 22 October, 1996

Erythroclonium muellerii

Dictyota sp.
Colpomenia sinuosa C. sinuosa

(1 5) = 0 2378 (1 5) = 0 0776

(1 6) = 2 069 (1 2) = 14 893

= 0 9429 = 0 886 = 0 05 = 4 = 0 033

= 0 4296 = 5

= 0 2142 = 5 = 1 00 = 2

1 2 1 9

12

topography is not smooth and the planar digitised data does not express any of the
vertical variability in the plants location. Nonetheless, it is a generic property of
fractals [27, p303] that a smooth projection of an object in space onto a surface,
as is done by the mapping procedure, results in an object of dimension which is
either the same as the original, or dimension 2, whichever is smaller. In our data
from rocky substrates, the dimension estimates were consistently less than 2 and
so we surmise that the dimension of the originally 3D distribution in space is the
same as the dimension of the 2D digitisation.

There was no correlation between the number of plants present and the fractal
dimension at any time period ( time , time ,

time , time ). The fractal nature was not merely
an artifact of the number of recruits present.

To analyse the relationship between the substrate complexity and the fractal
dimension of the settlement pattern the Spearman Rank Correlation statistic was
calculated. To do this the fractal dimensions were ranked and this rank compared
with that of the substrate ranking. The only significant correlation was found for
time 1 ( , , , d.f. , P ). There
was no significant correlation for the last three readings ( , d.f. ;

, d.f. ; , d.f. ). This may reflect that processes oc-
curring after the main settlement, such as predation or competition, tend to reduce
the influence of the substrate complexity.

In both the cleared areas and the undisturbed areas there were regions in which
there was no visible recruitment of any species. These distinct patches ranged from
10 square centimetres to approximately 40 square centimetres. The presence of
other algae also affected the position of juvenile recruitment. In particular a red
alga, (Sonderi), which formed a dense mat had no re-
cruits beneath or amongst it. Various other turfing alga may have actually pro-
moted or inhibited recruitment and survival of juveniles (e.g. and

). Many juveniles grew from under which may
have provided protection for the small juvenile algae.

Previous sections show that settlement sites of young fucoids on 20cm square ar-
eas are spread in a clumpy pattern. These clumps have a fractal dimension rang-
ing from – . Some recruits clearly occur in clumps while others appear to be
quite isolated—perhaps most easily appreciated in Figures 4 and 5 where plants



2

( )f �

�

x

�

� �

j

j j j

j
�

4.1 The spectrum

( )

= ( ) ( )

( )

0 9 1 2

( )

�

j � r r j

� N r =N N r r

� r r

r

� j

�

�

�

�

�

�

f �

f � : f � :

f �

f �

Fractal patterns of seaweed settlement 22 October, 1996 13

denoted by typically occur in tight clumps whereas those denoted by occur
in sparsely populated regions. This does not happen with homogeneous fractals
where the distribution in the neighbourhood of each plant is similar. The concept
of multi-fractals, an intertwined union of fractal subsets with different scaling ex-
ponents, thus appears relevant to the spatial distribution of plants.

One of the better descriptions of multi-fractals is by Feder [13, Chapt. 6]. An-
other good discussion, specific to an experimental situation, is by Sreenivasan [38,
5]. Here we first summarise the concepts of a multi-fractal distribution, then we

investigate the multi-fractal nature of the experimental plant distributions.

In order to quantify the above mentioned differences between plants, we first have
to quantify differences between the distribution of plants in any neighbourhood.
The Lipschitz-Hölder scaling exponent is one measure of the pattern of density
of plants as seen in any neighbourhood.

For each plant , let be the fraction of plants within a distance of the th
plant, i.e. where is the number of plants within a distance
(counting the plant itself for convenience). If

(2)

over a significant range of between the minimum resolution and the gross size of
the set, then the scaling exponent is associated with the th plant.

Roughly, for a non-uniform distribution of plants: a high value of the scal-
ing exponent corresponds to a region of sparse plants within regions of denser
clumps of plants; a low value of corresponds to a dense cluster of plants among a
sparser distribution. For this reason, has been called the “crowding index” [16].
These features are discussed further in Appendix A.2 and can be seen in Figures 2–
5 where different symbols have been used to tentatively assign each plant to within
some range of .

We now address how the Lipschitz-Hölder exponent may be used to quan-
tify aspects more subtle than the overall fractal dimension. Recognising that each
plant has an estimated value of associated with it, one approach is to calculate
the fractal dimension of all those plants associated with a common value of .
For example, in Figures 2–5 we could imagine computing the fractal dimension of:
plants drawn as giving for ; plants drawn as giving for ; etc.
In principle the dimension may be calculated for any value of , and so forms a
curve. This curve is called the multi-fractal spectrum.

In practise, the spectrum is computed via generalised dimensions and mass ex-
ponents as described in the Appendix. However, it is important to note that due to
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the relatively few plants at each site, the numerically obtained multi-fractal spec-
tra have only rough quantitative accuracy. The numerical spectra may be judged
as follows: the left-hand part of the curve is fairly accurate; while the right-hand
part of the curve is likely to be in error by about – .

The issue of accuracy in the presence of a limited amount of data is an impor-
tant one and has received much attention [15, 33, 3]. However, we approach this
issue by comparing the results from the fucoid data with the same numerical anal-
ysis applied to synthetic data which has the same overall characteristics. Thus we
can see explicitly the range of results obtainable from a variety of fractal models,
and how these compare with the results from the experimental data.

Numerically determined multi-fractal spectra for the fucoid distributions of Fig-
ures 2–5 are shown in Figure 7. We compare these curves with numerically
determined spectra Figure 8, for artificially generated homogeneous fractals with
a similar overall Hausdorf dimension. Ideally, the curves for the homoge-
neous data should just be a single point at . Due to the limitations of
the finite amount of data used, the numerically determined curves are broadened
to cover a range of . But this is still much narrower than the typical
range of displayed for the fucoid data where ranges from about 1.5 and up.
Note that the narrowest fucoid spectrum, that for the site and shown as the
short-dashed curve in Figure 7, is the most reliable as it is has the highest number
of data plants. Hence we are confident that the distribution exhibits a multi-fractal
nature.

One plausible mechanism for the generation of a multi-fractal distribution involves
a random pattern of grazing by predators of many different sizes.

We suppose that there is a very high mortality rate so that there were originally
very many infant plants. For the moment assume that initially these are more or
less evenly distributed over the settlement site, as seen for example on the settle-
ment plates. These plants are grazed upon by predators. If the predators are of
many sizes, and each predator grazes a random patch of the site, the patch being of
a size characteristic of the predator so that there are many sizes of grazed patches,
and eat predator destroys a fraction of the plants in their patch, then the resulting
distribution of plants may be multi-fractal.

For example, a deterministic construction based on this idea reduces to a method
to construct the binary multi-fractal [13, 6.2] as shown schematically in Figure 9.
Consider a one-dimensional spread of plants at a site. The one largest predator eats
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Figure 7: multi-fractal spectra for the fucoid data: ——–, the data
shown in Figure 2; - - - -, the data shown in Figure 3; – – –, the
data shown in Figure 4; — —, the data shown in Figure 5.
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Figure 8: numerically determined multi-fractal spectra for three homoge-
neous artificial fractals: ——–, 64 points on a fractal of dimension ;
- - - -, 125 points on a fractal of dimension ; and – – –, 216 points on a
fractal of dimension .

Figure 9: an initially uniform distribution of plants (dots), shown at the top, are
attacked by a hierarchy of predators (solid lines) destroying half the plants (dots)
in their grazed patch to form a binary multi-fractal, shown at the bottom.
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Figure 10: pure Cantor set with dimension

a fraction of the in the left-half of the site ( in the figure). There are two
of the next largest predator, and they each eat the fraction of the plants in the two
quarter size patches which are in the left-halves of the two halves. There are four
of the next largest predator, and they eat the fraction of the plants in the four eigth
size patches which are the left-halves of the four quarters. And so on to smaller and
smaller sizes. This generates a binary multi-fractal with parameter .

Note that the same multi-fractal pattern will arise independent of the order in
which the predators arrive. Our construction with the large predator first was just
a convenience to make the construction more akin to that of other constructions
of the binary multi-fractal. Indeed, it is likely that the small scale grazers do their
damage first while the plants are still small. We believe that the crucial feature
in this one-dimensional construction is that the number of grazers, or at least the
number of grazing episodes, is roughly inversely proportional to the grazer size.
For a distribution of plants on a surface, the number of grazers should be roughly
proportional to the inverse square power of their size.

The above argument of predation leading to multi-fractality has been based
upon an underlying distribution of plants which is spread uniformly randomly on
the substrate. However, some of the data exhibit such low-dimensions, as low as

, that the proposition of an underlying uniform spread is unreasonable.
Furthermore, we have presented evidence that Hausdorff dimensions are corre-
lated with substrate complexity. Nonetheless, the predation mechanism for gen-
erating a multifractal nature should still be valid when applied to an underlying
plant distribution which is itself a fractal distribution.

For example, on a one-dimensional substrate we could distribute plants on a
Cantor set of dimension as shown in Figure 10. Then a hierarchy
of predators eating the clumps of plants unevenly leads to a multi-fractal. Indeed,
the clumpiness of such a fractal distribution gives a natural mechanism for bound-
ing the extent of the region that any one predator eats. For example, if this Cantor
set distribution was of overall length , then a predator of a size to graze the left
half patch, of size , would detect a barren region of length before the right
half patch and so may choose not to traverse across the wasteland. Similarly on all
the smaller scales.
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Pre-settlement factors affecting the distribution of algal propagules include the tex-
ture of substratum [18, 7, 22], prevailing water currents [36], spore availability
[7], the presence and distribution of other algae: e.g. turfing algae, canopy plants
[19, 9, 23], and the method of dispersal from adults [21]. The small scale clumping
of juveniles could be due to pre-settlement factors related to dispersal [34]. How-
ever, for this particular community it is unlikely because species have
a life history, often described as direct [40], in which eggs are released from the
conceptacles individually and fertilised in the water column. In comparison with
other species where eggs may be released in groups. The occurrence of numerous
individuals of the same species sharing a single holdfast can not be explained by
factors during propagule release. This is further supported by multispecies hold-
fast attachment as was observed. In contrast, have zygotes which
remain on the thalli of adult plants until they are large and then individually “drop
off” the adult plant onto the substrate [21]. The distribution of these would be ex-
pected to be clumped around the adults but not at the fine scale that was observed
for many recruits in the community.

Forces impinging on a solitary individual may be very different to those acting
on an individual surrounded by similar organisms [37]. This group structure may
provide protection from grazers and support from wave motion [17]. The small
scale clumping of recruits is reflected in the canopy plants, many sharing the same
attachment position. Initially, one might expect that groupings of individuals may
result in increased competition for light and nutrients resulting in a negative effect
on individuals. There are three important aspects involved when considering this
situation. Firstly, the balancing of any competitive effect experienced by an in-
dividual must be outweighed by the benefits from the protection which each plant
receives by grouping otherwise such grouping would not occur. The “canopy unit”
arrangement may serve to lessen the community pressure. Secondly, the influence
that this “canopy unit” exerts on the surrounding community may be very differ-
ent to the influence exerted by solitary individuals. The “canopy unit” may exert
greater pressure on the surrounding community than a solitary individual. Thirdly,
competition may result in a decreased growth rate rather than influencing mortal-
ity which would not have been detected in this study. Nevertheless, the frequency
of this small scale clumping indicates that it is not detrimental for individuals to
grow in very close proximity.

Fractals provide us with a tool which considers patterns in ecology on many
scales. Their value in ecological work has been considered by various authors
[29, 6, 26, 25], although few have actually made use of them [4, 31]. The use of
fractal dimensions in examining algal settlement distributions has shown that areas
with topographic detail have patterns which may initially be related to the topog-



Pelvetia fastigiata

Erythroclonium muellerii

Fractal patterns of seaweed settlement 22 October, 1996 19

raphy. The juvenile distributions varied in their pattern from highly clumped to
uniformly random. Uniformly random distributions have previously been found
on settlement plates [22] although this did not involve an analysis of the fractal di-
mension. Initial patterns of recruits on topographically variable natural substrate
had settlement patterns with low fractal dimensions while settlement plates and
flatter rock surfaces had settlement patterns with high fractal dimensions. This re-
sult means that although the recruits are found in clumps throughout the commu-
nity, on topographically variable surfaces there tends to be a high degree of clump-
ing within clumping. The degree of clumping within clumping was related to the
variability of the rock surface, at least in the initial stages.

Fine scale topographical details may provide microsites for the settling of in-
dividuals [18] in a similar way that seeds aggregate in depressions in the soil [30].
Once propagules have settled factors such as the effects of succession and com-
petition between algae [12, 19], grazers [20], natural disturbances in the creation
of space e.g. storms, El Nino [41, 11] may become important. The importance of
these factors differ for different species in different environments. Algal settlement
patterns may be a reflection of the topographical detail and the combined effects
of topography and other factors. Although initial patterns of settlement implicate
the importance of topography, other factors must be acting on recruits, dissolving
any correlation between the fractal dimension and topography within the first three
months after settlement. Unless the surface of the natural substrate is examined
with equipment such as an underwater microscope [24] to examine initial stages,
the pattern observed is really the net result of both settlement and post-settlement
processes.

Most natural substrates are not even, resulting in a patchy mosaic of substrate
suitability throughout the community. Substrate selection has been shown for lar-
vae of sea urchins [7] and also for algal spores [18]. As an example, survival of the
algal species varies with topography, being higher on rock out-
crops or ridges [17]. The other aspect of substrate suitability in this community are
regions where the substrate had no recruits of any species. These were considered
to be uncolonisable rock with the lack of recruits attributed to several possibilities.
This could be due to a feature of the actual substrate preventing recruitment, or it
may have been due to allelopathic effects from previously settled algae. Alterna-
tively it may be due to interactions with the surrounding community.

Presence of a red turfing alga has been shown to inhibit recruitment of the dom-
inant algal species in previous studies [9]. A similar inhibition appears to be hap-
pening in the community under study. A thorough examination of the areas where
the red algae was growing showed no fucoid recruits.
The presence of the red alga inhibited either recruitment or growth through either
providing a physical barrier to prevent settlement, or by shading the settled recruits
to the extent that no growth was possible. Alternatively inhibition may have oc-
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curred through the actions of chemical allelopathy [23].
Spatial heterogeneity is a well known attribute of many vegetative systems. In

this study we have found that the distribution of all stages of algae on a local scale
is patchy. The hypothesis being tested here is whether this patchiness is a result
of where the algae settle with respect to the substrate or whether it is primarily a
product of processes occurring after those initial settlement stages. The conclu-
sions are that many features of the community affect the initial distribution of re-
cruits in particular small scale topographic details. However, as the recruits grow,
other processes become more important than the substrate topography (e.g. com-
petition with each other, grazers) which results in the mature algae also having a
patchy distribution.
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To estimate the fractal dimension of a set of settlement sites of plants we have used
the following algorithm based on ideas originally proposed by Grassberger & Pro-
caccia [14].

Let be the number of plants (neighbours) within a distance of the th
plant, noting that as we always count the th plant itself. Then an esti-
mate of the number of discs of radius needed to cover the plants, , may be
obtained by letting , which is the fraction of the plants within a
distance of the th plant, and computing

(3)

A crude argument to support this formula is as follows. The th plant is surrounded
by plants within a distance and so they may all be covered by just one disc
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Figure 11: An artificially generated distribution of plants which, if the
generation continued indefinitely, would have a fractal dimension of .
Here this fractal nature only really ranges from 0.37cm to 10cm.

of radius ; of this disc, a fraction of it is “used” to cover the th plant, and
so is the th plant’s contribution to the count of the number of discs needed
to cover the set.

Plotting versus we seek to find a straight line fit of slope
over a range of length-scales sandwiched between two horizontal regimes. When
a straight line of slope can be fitted to the intervening length-scales, then the
data is said to have a fractal dimension of . See Figure 12 which exhibits a fit of
dimension to the artificial data shown in Figure 11 which purportably
has a dimension of . This close agreement between the theoretical
dimension and the experimentally determined dimension is very good in view of
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Figure 12: The plot of versus for the artificial fractal of Fig-
ure 11; together with a best fit transcendental curve.

the relatively few data points.
As shown above, the fundamental numerical task in all of this work is the fitting

of a straight-line to data points on a log-log plot; this has to be done accurately and
reliably many thousands of times. This is difficult to do routinely because we have
little knowledge beforehand of the range in which this straight-line behaviour will
be exhibited.

However, we know that the domain of interest should lie between two hori-
zontal domains. Thus, to the data plotted in the -plane where and

, we fit the transcendental curve

(4)
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where and . Such a curve consists
of three domains: horizontal and asymptotic to for ; horizontal
and asymptotic to for ; and asymptotically a straight-line of slope

for . The two transitions at and between these domains occurs
exponentially and over a width in of and . The computational task was then
to vary the four parameters, , , and , in order to minimise the root-mean-
square distance between the curve and the data points; this minimisation was done
using the routine 04 .

With a little modification to avoid degenerate curve fits this procedure worked
reliably. For a given set of data, the number determined by the best fit gives
the desired exponent of the power law. Since the middle “straight-line” domain
essentially ranges from to , the difference estimates the range of length-
scales over which the fit is valid; in this application this domain spanned length-
scales varying by at least a factor of ten and often a factor of 30 which is adequate
for confidence in the results.

Note that at no stage have we tried to quantify the errors of our estimated di-
mensions. Firstly, the derived data points of the curve for any fractal is
a smooth curve plus independent noise, instead the variations in the curve are cor-
related from one scale to another. Second, there are systematic errors in the use
of . These two aspects of the above procedure make quantifying errors very
difficult.

Naively, we expect the Lipschitz-Hölder scaling exponent , introduced in Sec-
tion 4.1, to be the dimension (actually the correlation dimension) of the set—consider
the following examples.

1. An evenly spaced distribution of plants along a line displays a linear varia-
tion, , for larger than the spacing, and is indeed the dimen-
sion of a line.

2. Plants placed on a grid in the plane display a quadratic variation to
correspond to the two dimensions of the planar distribution.

3. On the classic Cantor set, as shown in Figure 10, we find that where
once again is the fractal dimension .

But these distributions are very special—they have a very even spread of plants.
What if the distribution is non-uniform?

Consider an example where, in one space dimension, plants are located at
for some power . Viewed from the plant , it is readily verified that

, i.e. the scaling exponent is . For example:
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locates plants at which are increasingly far apart the further
the plants are from the origin, and gives , a low value;

locates plants at which are more and more closely
spaced away from the origin, and gives the high value of .

This last example shows that the scaling exponent can be much higher than the
dimensionality of the space in which the plants are placed—a somewhat perplexing
feature until rendered commonplace by familiarity.

The Lipschitz-Hölder scaling exponent , based from any plant, characterises a
combination of the fractal dimension of the set of plants and the relative density of
plants in the immediate neighbourhood when compared to the distribution further
away.

A computational difficulty is to calculate the multi-fractal spectrum.
Adapting the description in Feder [13, 6.7], partition the plane into squares of

side and disregard empty squares. In a total of points, let be the number
of points within the th square. Assigning the or of the th square
to be , we calculate for various exponents

(5)

where we anticipate that the can be discerned over a reasonable
range of length-scales by plotting versus . Note that as

; and that , the Hausdorff fractal dimension of the set, as is
then just a count of the non-empty squares.

By examining how the mass exponent varies with we can recover informa-
tion about regions of the multi-fractal with different scaling exponents. The basic
reason for this is that as increases, the sum is dominated by the large val-
ues of which correspond to the regions of dense plants; conversely, as becomes
increasingly negative the sum is dominated by the small values of which corre-
spond to the regions of sparse plants. As outlined by Feder [13, 6.8], arguments
then lead to the multi-fractal spectrum being given parametrically as

(6)

though numerically it is more reliable to use the property that

(7)
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Figure 13: The mass exponent curve for the multi-fractal data displayed in
Figure 14.

which is the approach we take. Geometrically, if we consider a mass exponent
curve, such as the one shown in Figure 13, then is the negative of the slope of
the curve at any given , while is the intercept of the tangent to the curve with
the -axis. Thus we can easily appreciate that for the typical concave multi-fractal
mass exponent curve that is shown in Figure 13: the scaling exponents extend over
a finite range, that limited by the two slopes for large and small ; and the fractal
dimensions have a maximum at of , the Hausdorff fractal
dimension.

Note that for a uniform fractal distribution of plants, such as that shown in Fig-
ure 11, the mass exponent curve reduces to a straight line of slope . Thus, for
all the negative slope is and, since , the vertical intercept is
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.
We are inclined towards using a scheme which is different in detail to calculate

the mass exponent , one based on the correlation dimension as also proposed
by Pawelzik & Schuster [32], see also [16]. We estimate

(8)

Recall that is the number of plants (neighbours) within a distance of the
th plant, and that is the fraction of plants within a distance . As

argued early, the th plant is surrounded by plants within a distance and so
they may all be covered by just one disc of radius , and this disc contains a mass

; of this disc, a fraction of it is “used” to cover the th plant, and so
is the th plant’s contribution to the sum appearing in (5).

Plotting versus we seek to find a straight line fit of slope
over a range of length-scales sandwiched between two horizon-

tal regimes. We estimate the “generalised dimension” or “Renyi dimension”
rather than so that the straight line fit is much the same for all values of .
As commented on by Feder [13, 6.9]: is then the Hausdorff dimension; is
known as the , recognised in the multi-fractal spectrum as
the tangential intersection of the curve with the line ; and additionally,

is known as the correlation dimension.
For a uniform fractal, such as that in Figure 11, each plant in the fractal is as-

sociated with the same value of and so is just the fractal dimension of the
whole set. Also, the earlier examples show that in this case the value of is also
the same as the fractal dimension, and so . Note that in these cases
the curve is just a single point, is not defined for any other values of the scaling
exponent.

An example of a non-uniform fractal, the so-called binary multiplicative frac-
tal, and its associated multi-fractal spectrum is discussed in detail by Feder [13,
6.2]. Briefly, this is a one-dimensional fractal formed by unevenly distributing

plants on the interval . First, a proportion are assigned to the left-half
and the remaining greater proportion to the right-half .

Second, the plants in each half are unevenly assigned to their own halves accord-
ing to the same uneven proportions. Third, the plants in each of these quarters are
assigned unevenly to their halves according to the same rule. And so on. This gen-
erates a multi-fractal whose multi-fractal spectrum is given parametrically by

(9)

(10)
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for and where . The curve looks like an upside down
parabola, peaking at (the fractal dimension of the set) at ,
and stretching from to . Most of the plants in
this multi-fractal contribute to the peak of this curve as this is the set of the highest
fractal dimension; at the peak the scaling exponent (for ) and so
most plants are surrounded by denser clusters! The relatively few plants in the low
density regions, typically near the left end of the binary subintervals, contribute to
the large side of the curve and their low fractal dimension indicates how few there
are. Similarly few in number are those very dense clusters of plants associated with
a low scaling exponent .

Note that when this binary multiplicative fractal reduces to a uniform
distribution of plants on a one-dimensional line, and the multi-fractal spectrum (9–
10) collapses to the single point .

Figures 14 and 15 illustrate these ideas in two-dimensions rather than one-di-
mension. Figure 14 shows plants on a computer generated multi-fractal;
the distribution is the product of two binary multiplicative fractal distributions.
The theoretical multi-fractal spectrum, the curve, for this distribution is also
given by equations (9–10) except that the right-hand sides have to be doubled. The
distribution ideally has a Hausdorff fractal dimension of . However, there
are many regions of closely clumped plants among regions of sparsely distributed
plants, and a multi-fractal description gives more detail of these features. Comput-
ing the multi-fractal spectrum, as shown in Figure 15, we see the spread of scaling
exponents ranging from less than , characteristic of densely clumped plants,
to nearly , characteristic of sparse plants. However, these extremes occur
rather rarely as is shown by their low fractal dimension . Vastly more common
are regions associated with a high fractal dimension, here , and their cor-
responding scaling exponents – , characteristic of clumps with interspersed
dense clumps of plants.

It is important to note that even with data plants, the numerically
obtained multi-fractal spectrum has only rough quantitative accuracy. Comparing
with the theoretical spectrum (dashed), the numerical curve may be judged as fol-
lows: for small values of it is fairly accurate; but the peak height is too low at
about although reasonably accurately placed; while the right-hand part of the
curve is in error by about in . The inaccuracies for larger are not surprising
as these correspond to the sparse plants in the distribution, and being relatively few
in number the results which are heavily based on them are inaccurate. Conversely,
the left-hand side of the curve is dictated by the densely clumped plants of which
there are a large number and accurate predictions are consequently obtained.

We expect similar accuracy for the multi-fractal spectra based on the experi-
mental data which are shown in Figure 7.
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Figure 14: points on a two-dimensional multi-fractal. The points are
generated by their and coordinates being independently chosen at random from
the one-dimensional binary multiplicative fractal with . The points are
drawn in different shapes to exhibit the variations in the Lipschitz-Hölder exponent

as deduced by the algorithm used for the plant data.
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Figure 15: the numerically determined multi-fractal spectrum for the multi-
fractal data displayed in Figure 14. The dashed curve is the theoretical spec-
trum. Comparing the two curves, observe that the right-hand part of the numerical
curve is unreliable due to the paucity of data in the sparse areas of the plant distri-
bution.


