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THE FUNCTIONAL MORPHOLOGY OF TURF-FORMING 

SEAWEEDS: PERSISTENCE IN STRESSFUL 


MARINE HABITATS1 


MARKE. HAY' 
Stnitlz.tonirrrr Tropic.(rI Re.tetrrc.11 Instirrrre, Post Qffic,e Bo.t 2072, Btrlhon, P~rrtrnltr, trrrti 
L)epcir-ttnet~t of'Ec,ology rrnd Evolrrriot~nrl\. Biolo,gy. Ut~ ivers i t j  of' C~rlforrritr trt Irr , i t~e,  
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Ah.\trrrc,t. Many \eaweed\ that occur in physically stressful habitats or habitats subject to mod- 
erate herbivory grow a s  colonial turfs rather than as spatially separated individuals. The turf growth 
form is energetically expensive (the net production per gram ash free dry mass of turfs being 33-61% 
lower than that of individuals), but turf$ suffer less physiological damage during desiccating low tides 
and lose less biomass to herbivores. The upper portion? of turf-forming 4pecie.i $how significantly 
greater rates of apparent photosynthesis and dark respiration than do the lower portions. This spatial 
partitioning of photo\ynthetic activity decreases the energetic cost of the turf arrangement and may 
allow basal portions to function as persistent resting stages during periods of adverse conditions when 
uprights cannot be maintained. Turf-forming species are specialized for areas that are subject to 
moderate grazing pressure and physical stresse?. They are dependent upon these factors to prevent 
their competitive exclusion by more productive, but less resijtant, seaweeds. Damage to apical por- 
tions causes increased branching that results in a more tightly compacted turf. Algae that regenerate 
in thi\ way can adjust their growth form in accordance with varying levels of disturbance encountered 
in different habitats and thus incur the minimal cost consistent with survival in that area. 

For seaweeds occurring in stressful habitats, selection has favored characteristics that increase 
persistence in space and time even though these involve considerable losses in competitive ability 
and productivity. 

Key rvords: cotnpetition; tie.vic,c,ntiorr: Dictyota: , f i i t ~ g i t ~ ~reqf: Halimeda; h e r h i ~ , o p ;Laurencia; 
tnorpllolo,qy; prodrrc.ti~,ity; .setr\t.eetl.\; turf .  

INTRODUCTION 

Many seaweeds grow as colonial assemblages rather 
than as  spatially separated individuals (see Harper 
[I9771 for a discussion of similar growth characteris- 
tics in terrestrial plants). Among them. the turfgrowth 
form is abundant worldwide in tropical and temperate 
intertidal habitats (Stephenson and Stephenson 1972) 
and is generally the dominant form in shallow reef 
habitats (Dahl 1972. 1973, Cribb 1973, Benayahu and 
Lays 1977). 

Turf species possess both prostrate and upright 
branches. The number of uprights is increased pri- 
marily by means of vegetative growth, with the com- 
pact turf config~lration being affected by: ( I )  the num- 
ber of uprights per length of prostrate, (2) their degree 
of branching, and (3) the extent to which lateral con- 
nections form between uprights. 

Turf-forming species show considerable mor-pholog- 
ical plasticity. In subtidal habitats with low grazing, 
fronds tend to be arborescent, sparsely branched, and 
loosely arranged, while in desiccated or grazed areas 
they often become shorter, more erect and more high- 
ly branched and compacted (Dahl 1968, Stewart 1968, 
Munda 1972, Gittins 1975, L,iddle 1975). The produc- 

' Manujcript received 5 December 1979: revised 1 June 
1980: accepted 17 July 1980. 
vresenta d ~ r e , s :  D~~~~~~~~~ of paleobioloQv. N H B  W. 
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310, Smithsonian Institution, Washington. D.C. 20560 USA. 

tivity of a freshwater alga has been shown to vary 
inversely with the density of uprights (Heifer and 
McDiffett 1975) and packing often occurs to  such an 
extent in these turf-forming species that productivity 
should be severely decreased due to self-shading and 
nutrient limitation. 

Since many species from the three major divisions 
of seaweeds (Chlorophyta, Rhodophyta, and Phaeo- 
phyta) have shown convergent evolution of this 
growth form, it would appear that there are adaptive 
advantages inherent in the turf configuration that com- 
pensate for the loss of productivity and enable these 
species to maintain successfill populations in stressful 
habitats. 

The tight packing of uprights should result in: ( 1 )  
decreased net photosynthesis due to self-shading and 
nutrient depletion within the turf matrix, (2)  concen-
tration of photosynthetic activity in the upper portions 
of the thallus since lower portions receive little light, 
(3) decreased dark respiration rates in the lower por- 
tions of the assemblage because less energy needs to 
be allocated to building or maintaining photosynthetic 
apparatus. (4) reduction of desiccation stress due to 
the increased water-holding capacity of the turfs, ( 5 )  
decreased grazing losses because t~lrfs  are more dif- 
ficult for herbivores to manipulate and basal attach- 
ment areas are shielded by the tightly packed uprights, 
and (6) a competitive disadvantage since algae that 
grow as individuals or as  colonies with more loosely 



740 MARK E. HAY Ecology, Vol. 62, No.  3 

FIG.I .  The reef-flat habitat and major turf-forming species at Galeta Point, Panama. ( A )  Lnurrncitr pripillo.st~. (B)  Dic,tyotci 
httrtciyresii. (C) Halirnedo oprrnriri. (D)  a reef-flat exposure showing the turf-dominated edge of the flat in the foreground. 

arranged uprights require less attachment space, use 
light more efficiently and grow faster. 

These hypotheses were tested using the three most 
common tul-f-forming species at Galeta Reef, Panama: 
the brown Dic~yottr hartnyresii Lamouroux, the green 
Hnlimeda oprrrlrici (Linnaeus) Lamouroux and the red 
Lalirencici pnpillosci (Forsskal) Greville. 

Terminology 

In this paper the term turf refers to situations where 
upright branches are more than 0.5 cm tall and are 
packed so that each is in contact with its neighbors 
(Fig. IA-C). In tightly packed turfs this occurs to such 
an extent that the upper sections of the branches form 
a continuous. stiff matrix with each upright firmly at- 
tached to others with which it comes in contact. Small 
(<0.5 cm tall) filamentous species that trap sediment 
and have uprights that are arranged in both vertical 
and horizontal positions are called mats. The term run- 
ners is used for plants that produce scattered uprights 
along their stoloniferous prostrate axis. Algae that 
have a single attachment site and d o  not grow in tight 

clumps are referred to  as  individuals. Thin flat forms 
that adhere tightly to the substrate are called crusts. 

These terms are useful for discussing algal growth 
forms, but most seaweeds are phenotypically plastic 
and not all fit well into a single category. Some species 
have both crustose and upright portions or alternate 
between these forms during different periods of their 
life history (see Lubchenco and Cubit 1980), while oth- 
ers may grow a s  runners, individuals, loose turfs or 
tight turfs depending upon the habitat in which they 
occur 

The reef at Galeta Point is typical (Glynn 1971,) of 
fringing reefs on the Caribbean coast of Panama. On 
the reef flat. hard substrate is dominated by compact 
turfs consisting primarily of La~lrencitr ptrpillosci , Htil-
irnedtr oprrrlritr and several species of Dictyort~.Severe 
exposures to air occur on the reef flat when low tides 
coincide with calm weather (Fig. ID). These expo- 
sures can be of long duration (Fig. 1,) and may kill 
most nonswimming herbivores (Glynn 1968. Meyer et  
al. 1975, Hendler (977) a s  well a s  significantly reduce 
algal cover. 
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FIG.2 .  I h e  number of hours per day during which the turf-dominated reef edge was exposed by low tides for the year 
1974. Times ohove the X-axis represent daylight hours (between 0630-1800). lines below the X-axis represent nighttime hours 
(before 0600 or  after 1800). The histogram in the upper right corner gives a hreakdown of the duration of daytime exposures 
according to their frequency of occurrence. (Tidal data are from the mid-reef tide gauge at the Galeta Point Marine Laboratory 
of the Smithsonian Tropical Research Institute.) 

For a subtidal tropical habitat. the reef slope sup- 
ports a relatively I L I S ~growth of seaweeds (exceeding 
IOWA cover of upright species in some areas). Shal- 
lower areas are populated primarily by encrusting cor- 
alline algae and turf-forming species, while plants 
growing as  individuals or as  loosely arranged aggre- 
gates become more abundant with increasing depth. 
Turf-forming species at Galeta occur from 1-10 m 
deep, but form tightly compacted assemblages only in 
the shallower areas. 

Lnrrrencirr pnpi/lo.vri is a fleshy red alga that grows 
in coarse turfs from 3-10 cm tall (Fig. 1A) and occurs 
only on the platform. It is excluded from the reef slope 
by grazing fishes and urchins (M.  E.  Hay. persorlril 
ob.servrrtiotz). Unlike many other members of the ge- 
nus (Fenical 1975. Fenical and Norris 1975). it does 
not appear to have large amounts of secondary me-
tabolites which might act as  herbivore deterrents (Fen- 
ical and Norris, in p r e . ~ . ~ ) .  

Dicryotri brrrrc~yrc~.vsi, a thin brown alga that forms 
dense, hemispherical clumps (Fig. IB), is most abun- 
dant in tide pools and channel areas of the reef flat but 
can also occur on the reef slope. The lower portions 
of the fronds form extensive lateral connections that 
make the turf fairly rigid and only the uppermost por- 
tions move with the current. It has a high concentra- 
tion of polyphenol substances (Norris and Fenical. in 
prc..vs) and is often abundant in areas subject to mod- 
erate grazing pressure. 

Hrrlirnedtr opcrtzric~ is abundant on many portions of 
the reef slope above =5 m of depth and also occurs 
in moderate abundance on the reef flat in pools and 
beneath other algae or  sea grasses. It is a calcified, 
articulated, green alga that forms tightly compacted 
turfs on the reef flat (Fig. IC) and moderately com-
pacted ones on the shallow reef slope. It occurs as  a 
lax aggregation of nonlaterally connected uprights in 
the deeper parts of its range. H .  opcrntiri often occurs 
in areas subject to  high grazing rates and appears to 
be a low preference item for most herbivores. Work 
on the natural product chemistry of H .  opcrntici is now 
in progress (W.  Fenical, persorlril cornn~crnicc~tion) and 
it appears to  contain compounds related to those found 
in other members of the Codiaceae, for example Rhi-
pocc~phrrlers (Sun and Fenical 1979). 

Tc~sts of the hypothc~.ve.v 

To examine hypothesis 1: (turfs should have de- 
creased photosynthetic rates), turfs of Lrrerrc.tzcirr pcip- 
i l losc~, Hr~linledrr oprrnticl, and Dictyotrr bartciyresii 
were collected from the reef flat or shallow reef slope 
and incubated as  aggregates and as  "individuals" (in-
dividuals consisted of separated aggregates) in 1.19 L 
light and dark bottles. Six replicates were used in each 
experiment and all incubations (1-3 h) were conducted 
between 1000 and 1400 in a shallow seawater tank 
(30"-3 1°C) immediately adjacent to the reef flat. Stir- 
ring was provided at 10-15 min intervals by magnetic 
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stirrers and all 0, determinations were made with a 
Yellow Springs Instrument Company Model 57A 0, 
meter and electrode. Blank bottles were used to con- 
trol for phytoplankton production and all 0, determi-
nations were made under sunny skies on I0 April 1978. 

Hypotheses 2: (photosynthesis should be concen-
trated in the upper portions of the thallus) and 3: (res- 
piration should be reduced in the lower portions) were 
tested by cutting off the upper and lower thirds of turfs 
with a razor blade and incubating them as described 
above. (Preliminary tests using cut and uncut thalli 
showed no detectable effect of cutting on respiration 
or photosynthesis.) 

To  test hypothesis 4: (the turf form should decrease 
desiccation stress). a reef-flat exposure was simulated 
by placing turfs and individuals of each species on 
pieces of damp coral rock that were located in moist 
sand on the edge of the Galeta reef flat. The rate of 
water loss was measured by periodically subsampling 
~rprightsfrom the different treatments and determining 
their wet mass to dry mass ratios. Thalli from the two 
treatments were collected at hourly intervals, placed 
in running seawater for 0.5-1 h. then incubated as  
above. Because the t~rrf  configuration significantly af- 
fects production rates, all t~rrfs were separated and 
incubated as  individuals to facilitate comparison be- 
tween treatments. Tests were conducted during late 
June and early July 1978; however, since species were 
tested on separate days, no comparisons will be made 
between different species. Experiments using Dictyo-
tcr htrrttryrcsii and Htrlin~edtr oprrrztitr were done on 
hazy, overcast days, while those using Ltrrircrzcitr ptrp- 
illo.str were done on a bright, sunny day. Since these 
experiments were carried out during the wet season 
when wind speed and solar radiation are low (Hendler 
1976) and relative humidity is high. conditions pre- 
vailing during reef flat exposures that occur during the 
dry season are probably much more severe. 

Hypothesis 5: (turfs should be less vulnerable to 
grazing) was evaluated by pairing aggregate and indi- 
vidual arrangements of each species by wet mass. 
mounting them in numbered sections of three-strand 
rope and placing them where the sea ~rrchin t)icrdc~rntr 
trrztilltrrrrm Philippi or the parrot fish Sptrri.sornc~ rub- 
ripinne Cuvier and Valenciennes could graze them. 
Ten aggregate-individual pairs were used in each ex- 
periment. 

Grazing experiments with urchins were performed 
in a shallow, sandy lagoon where t)irrdc~mtrdensities 
were 10.4 urchinsim' (st;.= 2.2. .Y = 10) and herbiv- 
orous fish were not active (throughout 2.0 h of obser- 
\lation during each test, no herbivorouc fish were seen 
in the experimental area). Urchin experiments lasted 
12-24 h.  Fish grazing experiments were performed in 
a large (depth = 1.0 m, diameter = 3.0 m) ,  continu- 
ous-flow seawater tank and all tests lasted 24 h. 

The witability of turf-dominated areas for urchins 
was assessed by measuring ~rrchin densities in turf 

centers, a t  turf margins, and in nearby areas that were 
structurally similar but devoid of turfs. A 0.15-m' 
(30 x 50 cm) quadrat was flipped end-over-end along 
six transects randomly located within a bed of Poritc..~ 
(finger coral) that was partially overgrown by t~rrfs  
(primarily Htrlin~edtr oprtnricl, with Dictyottr hnrttry- 
resii and Arnphiron spp. being present but much le\s 
abundant). All transects were between I and 2 m deep 
and the coral structure below turfs appeared identical 
to that which was nearby but not overgrown. Quadrats 
with >8(% cover of turfs were considered turf cen- 
ters. those with 25-5m turf margins, and those with 
<5% were considered to be devoid of turfs. All ur-
chins within each quadrat were counted regardless of 
species or size. 

Several different approaches were used to evaluate 
hypothesis 6: (turfs should be poor competitors). The 
apparent photosynthetic rate of each common species 
(Actrrzthophorc~ spicif'c.t.tr [Vahl] Borgesen: Cerztroc,cv-
(1.7 cltr~~rtltrtrrrn[C. Agardh] Montagne: t)ictyottr htrr- 
t t ~ ~ r e ~ i i :Gelidielltr trc,c~rostr [Forsskal] Feldmann and 
Hamel: Htrlinzedtr oprrrztirr : Hypnerr nzrt.scifi)rrni.c 
[Wulfen] Lamouroux: Ltrrrrc.nc.itr ptrpillo.vcr : and Spyr-
idic1~51trmento.scr[Wulfen] Harvey) within the Larrrrrz-
cirr-dominated area of the reef flat was measured as 
described above. 

The susceptibility of each of these species to des- 
iccation was measured by simulating a 2-h reef-flat 
exposure and comparing photosynthetic rates of des- 
iccated plants with nondesiccated controls. Plants of 
each species were simultaneously placed on a damp 
concrete slab located by the reef flat and allowed to 
dry for 2 h. The plants were then allowed to recover 
in running seawater for 48 h before measurements of 
apparent photosynthesis were made. Control plants 
were also held in running seawater for 48 h prior to 
incubation. 

To  assess the effect of prolonged low tides. 13 0.15- 
m' quadrats were located on the algal-dominated edge 
of the reef flat and the percentage cover of each 
species of algae monitored before and after a pro-
longed exposure that occurred during April and May 
of 1978. 

Between periods of prolonged low tides, Acnntho-
phortr .spicifPrtr, Hypnetr nlrrsc,ifbrn~is, Spyriditr $ / t i -

n~erzto.sn,and Centrocc~rcr.~c~lnvrrlrrrrtmoften overgrow 
reef-flat populations of Ltcrtrerzcicr pcrpilloscc and Httl-
irnedtr oprrnticr, but these facultative epiphytes were 
exceedingly rare o r  absent on the reef slope. To  de- 
termine whether grazers were responsible for restrict- 
ing these species from the reef slope, L6 individuals of 
each species were blotted dry, weighed, placed in 
numbered sections of three-strand rope and these 
ropes placed in four sets of paired cages ( 1.0 x 1.5 cm 
mesh). For each pair of cages. one was completely 
closed while the other had one side removed: all were 
located between I .O and 1.5 m deep. After 72 h the 
algae were collected and reweighed. 

http:n~erzto.sn
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T A B L ~ Apparent photmynthetic and dark respiration rates of three turf-forming algal species when incubated a s  turfs and I .  

a s  individuals. .Y = 6 for each treatment. 


Apparent Dark 
photosynthesis respiration 
in mg O,.g in mg O,.g ' 
ash-free dry ash-free dry 

mass.h-'  and P value by the mas\ .h- '  and P value by the 
95% confidence Mann-Whitney 95% confidence Mann-Whitney 

Species J ' Y P ~  limit\ 

Loirrenc.icr turf 6.87 ? 1.60 
pcipillo,\ (I individual 9.92 -+ 0.91 

Htrlinled(c turf 1.43 -+ 0.52 
oprrn tirr individu:il 2.54 -+ 0.31 

Dictyotti t u ~ f  11.38 t 1.54 
harttryre.t i i  individual 22.95 -C 5.37 

The basic distribution. by habitat and depth within 
habitat, of tight turfs. loose tutfs, mats, runners, 
crusts, and individuals was determined by running five 
transect lines from the seaward edge of the reef flat to 
the base of the reef slope and recording the algal form 
that fell beneath the end point of each 0.5-m interval. 
Algal cover on the sand plain (depth of 14 m) is low. 
so in this habitat. 100 randomly placed 1 .O-m' quadrats 
with 100 stratified random points within each quadrat 
were used to assess the abundance of algal types. De- 
terminations of sand-plain composition were made 70- 
150 m away from the reef base to eliminate the effects 
of reef-associated grazers. 

Hyporhc~.si.s I.-As shown in Table I .  all of the 
species tested had significantly (Mann-Whitney U 
te\t;  P < ,005) greater productivitle\ a \  lnd~v~duals  
than a\  turf\. The Increase in mean apparent photo- 
\ynthe\i\ vaned from 44% for Lnrrrentirr to 102% for 
Dictyotrr. Mean dark respiration rates were also sig- 
nificantly (Mann-Whitney U test; P < .01) higher for 
Hrrlinzedrr and Z)icryorci individuals. Because of the 
lesser relative increases in these rates and the rela- 
tively low magnitude of dark respiration, this does not 
offset the increase in apparent photosynthesis. Using 
these production measurements and conversion fac- 
tors proposed by Wanders (1976) for the shallow reef 
algae at  Curacao, Netherlands Antilles, a rough esti- 
mate of the net production per 24 h was calculated for 
turfs and individuals (Table 3). 

The decreased productivity of the turfs results from 
both self-shading and increased diffusion gradients. 
When turfs were pulled from the substrate and placed 
above a light sensor, only about 0.3% of the ambient. 
photosynthetically a c t ~ v e  l ~ g h t  (ambien t  = 1400 
pE.m-L. \ - l )  penetrated to the ba\e\ of Hnlirnedrr 
oprrnrltr, about 0.1% to the ba\e\ of Lnrrrent irr prrpil- 
loscr, and about 0.05% to the bases of Dictyotrr hrir-
rtryrcvii: and when liquified fluorescent dye was squirt- 
ed into the lower sections of turfs on the reef flat, it 
often took 2-5 min to disperse completely into the 

U test limits (/ test 

P = ,005 -0.98 t 0.09 . l o >  P > .05 
1 . 1 5  -C 0.14 

P -: ,0025 -0.96 t 0.08 P ,0025 
- 1.33 2 0.08 

3 . 1 6  -+ 0.39 ,002 > P > .01P -< .0025 
-3.74 -+ 0.23 

water column despite moderate to heavy water mo-
tion. 

Hypothe.se.s 2 rrtzd 3.-The upper portions of all 
species showed apparent photosynthetic rates that 
were much greater (P < ,0025) than those of lower 
portions (Table 3). and the lower portions of all species 
showed significantly ( P  < .01) decreased rates of dark 
respiration. Therefore, those portions of the plant that 
receive adequate light and water flow are highly pro- 
ductive but also costly to maintain, while lower por- 
tions which are subject to near darkness and overlap- 
ping diffusion gradients have little photosynthetic 
capacity but also have maintenance costs that are re- 
duced by 18-5376. 

Hypothesis 4.-In each species, the aggregate form 
significantly decreased the rate of water loss and the 
rate a t  which apparent photosynthesis declined (Fig. 
3). In the case of individuals, apparent photosynthesis 
dropped to zero or below after only 2 h of exposure. 
Since many reef-flat exposures last longer than this 
(Fig. 2) and result in more severe environmental con- 
ditions than simulated here, it appears that nonaggre- 
gated individuals of these algae would often be killed 
on the reef flat. 

Hypothesis 5.-When subjected to grazing fish and 
urchins, significantly (P < .05) more biomass was lost 
by individuals than by aggregates (Table 4). Under 
these test conditions, the turf growth form decreased 
losses by 15-50%. 

TABLE2. Net production (mg O,.g-'  ash-free dry mas5.d 
of turfs and individuals for a 24-h period (using conversion 
factors proposed by Wander\ [I9761 for the shallow reef 
algae at Curacao. Netherlands Antilles). 

Net 
production124 h 

Species 
as 

turf 
a \  

individuals 

% increase 
of indi- 
viduals 

Halitnrdtr oprrnticr 
Larirrnc,itr ~~crp i l lost i  
Dictyotci hrrrtrryrc~sii 

4.6 
57.7 
80.6 

11.8 
86.0 

188.3 

156 
49 

134 



744 MARK E .  HAY Ecology. Vol. 62. No.  3 

l '.i~[ Apparent photosynthetic and dark re\piration rate5 of the upper and lower portions of three turfiforming algal E 3. 
5pecie5. .Y = 6 for each treatment. 

.Apparent 
photosynthesis in 

mg O,.g ' ash-free 
dry mass.  h-I and 
95% confidence 

Specie5 Type limits 

l o p  12.63 2 1.48 
Bottom 4.50 i 1.11 

Top
Bottom 

5.78 t 0.41 
I .6l t 0.40 

Dic,tyottr TOP 36.84 i 4.86 
htrrttryrc,\ii Bottom 4.30 2 3. I6 

Observations on feeding behavior in the field sug- 
ge\t that these figures may be low. When urchins were 
observed in the field. they were rarely seen grazing in 
the center of turf patches. Their grazing activity was 
confined to the edges of turfs. and when placed in the 
center o r  large turf patches they invariably moved 
rapidly back to the margin. A few urchins were oc- 
casionally seen near the center of turf patches, but 
only after extended periods of very calm seas. When- 
ever current velocity o r  wave action increased, they 
quickly moved off the turfs. When urchins did graze 
turfs, they ~rsually removed only the uppermost por- 
tion of the fronds without harming lower plant por- 
tions. No ~rrchins were seen to crop the turf to the 
substrate. Grazing fish were not limited to turf margins 
but, like urchins. did graze only the uppermost sec-
tions of the algae and were never seen to eat through 
to the substrate. 

Sea urchin densities are significantly (P< .01) low- 
e r  in areas dominated by turfs (Table 5 ) ,  with densities 
at turf centers being 98% lower and those at  turf mar- 
gins being 70% lower than those in nearby areas with- 
out turf cover. 

Hypothesi .~6.-Fig. 4 shows the di:;tributions with 
depth of algal growth forms at Galeta Point, Panama. 
Turfs are most common on the reef flat and shallow 
reef slope where desiccation or herbivory are impor- 
tant factors. The turf growth form is gradually re-
placed by the individual form on deeper portions of 
the reef, and on the sand plain individuals are the 
dominant form and turfs are absent. 

On the reef flat, turf formers such as  Lrrrrrenc.itr pup- 
illo.str . Htrlin~c.dtr oprrn titi, and Gc.lidiellrr rrcero.srr are 
often heavily overgrown by more productive species 
(Fig. 5) such as  Hypnc~r rntrscifornzis, Actrnrhophorci 
.spic,ifi~rtr, I)ic,r?.otci htrrtc~yre.vii, Spj,riclitr $filri~tlolro.sti, 
and Colrroc,orti.s c~l( i~~rrl t i t io~~.  Although some of these 
species can also form turfs, they are more easily dam- 
aged by desiccation than are the less productive turfs 
(Fig. 6) and their abundance is often drastically re-
duced following severe low tides (Table 6). An ex-
tended low tide that occurred during late April and 

Dark respiration in 

mg O,.g-l a\h-free 


P value dry ma\ \ .  h-' and P value 

by the Mann- 95% confidence hy the Mann- 


Whitney U test limit\ Whitney U test 


P -: ,0025 - 1.60 t 0.13 P = .01 
- 1.39 t 0.18 

- 1 .32 2 0.08P -< .0025 P .: ,0025
-0.72 i 0.09 

-4.13 i 0.18P .:.0025 P .: ,0025 
- 1.94 t 0.21 

early May 1978 caused a 97% reduction in the cover 
of these more productive species while reducing the 
cover of the less productive turfs by only 46%. This 
differential susceptibility to desiccation appears to be 
primarily responsible for the periodic exclusion of 
Accintl~ophorti, Hypnaci, Cenfrocerrr.~, Spyridin and 
Dic,ryottr from the reef flat and for preventing them 
from excluding the less productive turfs. 

Four of these more productive species also show 
greater susceptibility to herbivory than the grazer-re- 
sistant turfs such a s  H(i1itnedn oprrntirr, Dictyotrr htrr- 
tcryre.vii and various species of turf-forming coralline 
algae that occur on the reef slope. When these more 
productive species were transplanted to the shallow 
reef slope they showed positive growth rates (Fig. 7) 
in cages that excluded urchins and large fish (small 
parrot fish were often seen feeding within the exclo- 
sure cages) but suffered large losses in open cages. 

The turf growth form causes a large decrease in ap- 
parent photosynthesis and a small decrease in dark 
respiration (Table 1). The effect on net photosynthesis 
per 24 h is large. with individuals being 50-15m more 
productive than turfs (Table 2). This figure is probably 
low for two reasons. First, these turfs usually occur 
in clumps that are 70 cm to several metres in diameter 
and, therefore, have relatively little edge area where 
light can reach basal portions and where diffusion gra- 
dients can be easily broken down by water- movement. 
The turf sections used in these incubations were <4 
cm in diameter and therefore had a much greater pro- 
portion of exposed edge. Secondly. fronds within t~rrfs  
are usually much more deeply pigmented in the upper 
sections than in the lower portions and these lower 
portions have less photosynthetic potential (Table 3).  
Individual thalli should not show this spatial differ- 
entiation of pigmentation and photosynthetic activity 
and should have higher rates of production than "in- 
dividuals" made by separating turfs. These biases may 
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be offset to  some extent by the stirring regime used Decreased productivity results from both self-shad- 
for productivity determinations. since wave action in& and inequitable nutrient distribution. Light reach- 
should be more effective at  breaking down diffusion ing the lower sections of the turf matrix is only 0.05- 
gradients within the turf. During the rough, dry sea- 0.2% (0.7-2.8 ~ E . m - ~ . s - l  at midday) of that reaching 
son. diffusion gradients may not be large but lower the uppermost portions. and dye studies conducted in 
sections of the turf would still be below light compen- the field indicate that water exchange between the in- 
sation. During the calm, wet season, nutrient depletion ternal turf matrix and the water column is slow. 
will be a much greater problem since wave action is Rates of apparent photosynthesis and dark respira- 
very slight. (On many days breakers are only a few tion are spatially separated within the thalli of turf 
centimetres tall.) formers, with upper portions having higher rates than 

T A B L E4. The differential impact of grazers on turfs and individuals. 

Approximate Mean amount 

initial lost by individuals P value 


mean wet mass in excess of that by the Wilcoxon 

Species N of algae (g) lost by turfs paired-sample test 


.A. 	Percent wet mass lost by individuals as compared with turfs due to the grazing activity of the parrot fish, Spori.sotno 
rrrhripintzc,. 

Htrlitnetltr ol~rrt~rttr 10 45 -20.8% i 13.4 P < ,0025 
Ltrrrretzc~irr ptrr~illo.\tr 10 30 -46.1% t 16.8 P < .0025 
Dic , r~o tc~harrtr~rr.sii  10 I0 - 15.1% i 22.4 P = .05 

B .  	Percent wet ma\s lost by individuals a \  compared with turfs due to the grazlng activity of the sea urch~n.  Ditrtlenztr 
~ ~ n t i l l ~ ~ r r r t n .  
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TABL.E5. Mean sea ~ ~ r c h i n  density in 0.15-m' quadrats as  a 
function of turf abundance. All means are significantly dif- 
ferent at P < .01 (Analysis of Var~ance) .  

Mean number of 
sea  urchins1 

Number of 0.15 m' and 
quadrats 95% confidence 
surveyed interval 

Turf centers 
(>80C/r turf cover)  46 0.09 i 0.08 

T11r.f margins 
(25-50Z turf cover) 29 I .38 i 0.55 

.Areas without turfs 
(<5% turf cover)  32 4.62 i 1.48 

lower portions (Table 3) .  The decreased respirative 
demand o f  the t u f s  basal portion lowers the energetic 
cost o f  the growth form and may allow this portion to 
act as a resting stage during periods o f  severe stress 
when uprights cannot be maintained ( i .e . ,  periods o f  
prolonged low tides, long periods o f  low light intensity 
due to turbidity or burial by sediment, or periods o f  
intense grazing). The low photosynthetic potential o f  
basal portions should have little ef fect  on overall pho- 
tosynthesis since low light levels and slow nutrient 
exchange already limit production within this portion 
o f  the turf. 

The growth form o f  most turf-forming species is 
very plastic and the pattern o f  photosynthetic and res- 
piration rates within the thalli. and o f  thalli packing 
within the turfs, may be responsive to a wide variety 
o f  different situations. As herbivore activity (Gosline 
1965, Vine 1974). light intensity and water motion de- 
crease with depth. turfs at greater depths tend to be 
much more loosely arranged ( i .e . .  light can penetrate 
to basal sections) and pigmentation differences be- 
tween upper and lower portions appear to be less pro- 
nounced. 

Although it has not been shown for these particular 
seaweeds. many algae branch when the apical cell is 
damaged or removed (Isaac 1956, Dixon 1958. 1960). 
Such a regeneration pattern may provide a mechanism 
by which algae can adjust the degree o f  upright pack- 
ing in accordance with the particular pressures they 
encounter in different areas. Thus. the more often a 
turf is grazed or killed back by physical factors (des- 
iccation, excessive light or high temperatures during 
exposures), the more highly compacted it becomes. 
thereby decreasing the impact o f  these factors in the 
future. Seaweeds that regenerate in this manner have 
the advantage o f  being able to form compact turfs in 
areas where physical stresses or herbivory are o f  par- 
amount importance or to grow as loosely arranged ag- 
gregates in areas that are not subject to these pressures 
and where competition is the primary selective factor. 

When exposed to desiccating conditions, individual? 
lose water and photosynthetic ability at a much faster 

REEF 
)SLOPE 

SAN3 
,/PLAIN 

MATS 
NDlVIDLlLLS RUNNERS 

F I G .4. The relative percent cover  of algal growth forms 
on the reef flat. reef slope and sand plain at  Galeta Point, 
Panama. Very tightly compacted turfs are  shown as  darker 
on the diagram. The  reef-flat habitat is subject to  considerirble 
desiccation stress and slight herbivory. The reef slope i \  nev-
er  desiccated but herbivory is intensive in the shallower area\  
and decreases somewhat with depth. The sand-plain habitat 
is characterized by low light levels and very little herbivore 
activity. 

rate than turfs (Fig. 3). Using rates o f  apparent pho- 
tosynthesis as an indication o f  physiological damage. 
it appears that individuals cannot withstand more than 
about 2 h o f  exposure to air. The majority o f  daytime 
exposures o f  the reef flat last longer than this (Fig. 2). 
and nonturf formers growing on the reef flat often suf- 
fer severe losses. 

The turf growth form lost 15-5()% less biomass to 
grazers than did individuals (Table 4) .  The  t u r f s  re- 
duced susceptibility to urchin grazing appears to result 
from: ( 1 )  the reluctance o f  the urchins to climb onto 
the top o f  turfs where they are more apt to  be dis- 
lodged by water motion and probably more prone to 
predation. ( 2 )  urchins being forced to eat from the top 
down, thus minimizing the number o f  uprights lost to 
the water column because o f  grazing on basal attach- 
ment areas. and ( 3 )  the decreased structural hetero- 
geneity that results when turfs overgrow corals and f i l l  
in crevices and holes that serve as necessary refugia 
for urchins. 

The impact o f  fish grazing appeared to be reduced 
for similar reasons; refuge holes are less common in 
turf-dominated areas, basal attachment sections are 
shielded by the tightly packed uprights. and it seemed 
to be much more difficult for fish to bite into the com- 
pacted uprights than for them to crop loosely arranged 
uprights or those projecting beyond the colony margin. 

Since both desiccation and herbivory will affect col- 
ony margins more than colony centers, the impact o f  
these factors should decrease with increasing colony 
size (i.e..  with greater area to circumference ratio). 

i 
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FIG.5. Mean rates of apparent photosynthesis for the 
most common reef-flat algal species at Galeta Point. Panama. 
Vertical bars represent 9 5 9  confidence intervals. ,V = 6 for 
all species. Htrl i tneda. Geli t l i r l l r i .  Lorrret~c.in, and Dicryortr 
often form compact turfs attached to primary substrate. 
Actrntlzophortr,, H y n c ~ r i ,  Spyritiitr, Cet~troc.c,rrrs, and at times 
Dic,r?ort~overgrow Htrlitnrcltr. Geli t i iel lo, and Lerrrretlcic~and 
can attach to primary substrate or other plants. 

And as turfs increase in size. their central portions 
also become further removed from unobstructed crev- 
ices and holes which may serve as refugia for herbi- 
vores. Thus, colonies that have sufficiently large area- 
to-circumference ratios, and which become large 
enough appreciably to decrease appropriate herbivore 
habitat may be able to decrease herbivore impact to 
such an extent that they escape in size. 

C o r n p e t i t i o n ,  suh.vtr( i te r e t e n t i o n ,  

r i n d  p e r s i s t e ~ z c e  

When competing for space and light with algae that 
grow as individuals or as less tightly compacted col- 
onies, the slower growing tut-f formers should be in- 
ferior. In the absence o f  physical disturbance or her- 
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F ~ ~ , ,  percent change i n  
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apparent photosynthesis of the 
when subiected to 2 h of 
control and desiccat. p l a n t s  

seawater for 48 h before pho. 
tosynthetic mea5u,.ements were ~ ~ indicate~ i~ ~ 
significant differences at P < .05 (Mann-Whitney U test). 

bivory. faster growing algal species would be more 
efficient at colonizing newly available substrate by 
both spore release and vegetative expansion and 
would also rapidly overgrow and shade out existing 
turfs. While established turfs may be able to interfere 
with the settlement and germination of  obligate pri- 
mary substrate species, they are very susceptible to 
overgrowth by more productive algae that can utilize 
both primary and secondary substrate. 

For the species examined, the primary factor deter- 
mining overgrowth appears to be rate o f  photosynthe- 
sis. All epiphytes have a higher photosynthetic rate 
than the plants that they overgrow (Fig. 5 )  and more 
productive tut-fs will often overgrow less productive 

T ~ B I6 .  The effect of prolonged low tides on reef-flat populations of turf-forming algae which grow on primary substrate E 

( H n l i n ~ e l l a .  Ltrrrrencin and Gc~lidic~l l tr)and on the facultative epiphytes (Centroc,c~rtr.\. Hyp t~ rc r .  Actrtzthophortr. Spyr id in,  
and Dic,ryora) that overgrow them. Data are from 13 0. 15-mL quadrat\ located on the Lrrrrrc~t~c,itr-dominatededge of the 
reef flat. 

Mean 5? cover t SE Mean 5? cover t SE 

before low tides after low tides % Mean 
Species (3 April 1978) (4 May 1978) change change 

~ k 

http:Lorrret~c.in
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These findings can be contrasted with those o f  Jack- I
FILkOSAHYPNEA 

W R O A  
C- son (1977) who suggests that, for marine invertebrates, 

MU-MIS CLA \ULATUM 

2 0 1  ACAUTHOPHORA 
SDICIFERA 

0 - i 

FIG.7 .  Percent change in wet mass of four reef-flat algal 
specie\ when placed in open cages (light bar\) and exclusion 
cages (\haded bars) on the \hallow reef slope for 72 h. Ver- 
tical bars indicate 95% confidence intervals. .V = 8 for each 
treatment 

ones (i.e..  Dic,rjorrr overgrow4 Lrrrtrrncitr and Hrrli- 
rnrdtr, Lalrrrncicr overgrow4 Hulitnrdn but not Dic- 
r~ortr, and Htrlirrlrdrr never overgrows either L)ic.rjorc~ 
or Lirllret~(,irl). The more productive species are more 
susceptible to herbivory and desiccation than are the 
less productive turfs (Figs. 6 and 7 ) .  Thus ,  compen- 
satory mortality due to herb~vory on the reef slope and 
periodic low tides on the reef flat appear to be. in large 
part. responsible for the maintenance o f  abundant turf 
formers in these areas. When  the turf-dominated edge 
o f  the reef flat remains submerged for long periods, 
cover o f  epiphytes may reach IOm in some areas. 
Follow~ng low t ~ d e s  o f  long duration, the cover o f  
ep1phyte4 mny drop by 97%. while the cover o f  t u ~ f s  
that occupy primary substrate4 14 reduced by only 46% 
(Table 6 ) .  

I f  turf formers are competitive inferiors, then they 
should be restricted to habitats where grazers or phys- 
ical factors preclude the establishment o f  more pro- 
duct ive,  competitively-superior algae. Thus  turfs  
should be most common on the physically stressful 
reef flat or the shallow reef slope where herbivorous 
fish and urchins are most active. As light becomes 
limiting (Dayton 1975) and herbivore activity de-
creases in deeper areas (Gosline 1965, Vine 1974), 
turfs should be replaced by individuals. 

The distribution o f  algal growth forms on Galeta reef 
(Fig. 4 )  conforms well to  this prediction. The relative 
abundance o f  turfs and individuals is inversely related, 
with turfs being most abundant at shallower depths. 
On the deeper sand plain where grazing pressure is 
very low (Earle 1972. Dahl 1973, Parrish and Zim- 
merman 19771, ind~viduals account for about 88% o f  
the algal cover and turf4 are completely absent. 

colonial forms are competitively superior to forms that 
grow as individuals. Reasons for the differing results 
are unclear but may relate to differences in reproduc- 
tive options (most  solitary animals must rely on sexual 
reproduction [Jackson 19771 while many solitary sea- 
weeds may reproduce sexually, asexually or colonize 
by fragmentation [see Dixon 1965, 19731) or tolerance 
to physical stresses (solitary invertebrates are often 
protected by hard exteriors while colonial forms usu- 
ally have their tissues more exposed). As with the sea- 
weeds examined here, the impact o f  predation on sol- 
itary forms is greater than on colonial ones (Jackson 
1977, Buss 1979). I f  this differential impact is great 
enough, predation may also play an important role in 
determining distributional patterns in space and time 
that have been attributed (Jackson 1977) primarily to 
competitive interactions. 

The primary advantage o f  the turf growth form ap- 
pears to be in its ability to  persist within areas affected 
by herbivores and physical stresses that continuously 
or periodically exclude other more productive algae. 
Moderate physical stresses or herbivore activity affect 
turfs very little while causing considerable damage to 
many other algae, but occasional severe stresses may 
greatly affect turf formers as well. During such pe- 
riods. most uprights may be destroyed but many o f  
the prostrate axes or crusts growing in crevices. holes 
or other refugia remain healthy and are fully capable 
o f  regenerating uprights (Dixon 1965, and M. E .  Hay, 
prr.c.ontr1 ohsrr~.c~rior~) (see Buss [I9791 for a discus- 
sion o f  similar processes in colonial animals). Since 
basal portions have low rates o f  respiration (Table 3 ) ,  
they may serve as resting stages that maintain the pop- 
ulation until conditions are again suitable for growth. 
By leaving persistent bases, these algae, like colonial 
animals (Jackson 1977, 1979, Buss 1979) and clonal 
terrestrial plants (Harper 1977, Harper and Bell 1979). 
are able to: ( I )  avoid the inefficiency o f  recolonization 
by spores, many o f  which settle in inappropriate hab- 
itats or are eaten by filter feeders; (2 )  avoid interfer- 
ence competition with other species that settle more 
rapidly and interfere with spore settlement or germi- 
nation; (3)  avoid complete dependence upon the spore 
and sporeling stages that are more susceptible to her- 
bivory (Burrows and Lodge 1950, D. P. Cheney and 
E. Sideman, persontrl cornrnrtnictrrion) and physical 
stress (North 1971. Bird and McLachlan 1974). and 
( 4 ) insure the retention o f  primary substrate in a lo-
cation that has previously proven to be suitable for 
growth. 

It should also be recognized that the stressful hab- 
itats spoken o f  here are rigorous in a general sense but 
may be relatively benign for turfs. Seaweeds that can 
form turfs appear to be specialized for physically de- 
manding areas or those subject to moderate levels o f  
herbivory. For turfs ,  habitats with benign physical re-
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gimes and few herbivores may be very stressful due 
to greater pressure from superior competitors. 
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