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SUMMARY

 

New Zealand has a rich and diverse macroalgal flora
that has been studied since James Cook’s first voyage
to New Zealand in 1769. The New Zealand region
ranges from cool temperate seas at southerly latitudes
to subtropical waters in the north. Here we review the
history of phycological research in New Zealand since
1900, and the current status of research in taxonomy,
ecology, physiology and seaweed uses including aqua-
culture and seaweed extracts. Some 770 species of
seaweed are known to New Zealand, of which 22 are
alien. Few taxa have received monographic treatment
and many remain to be described. Polysaccharides
have been identified from over 80 New Zealand sea-
weeds and many of these compounds have commercial
potential. In addition to urgent taxonomic work, future
research should include a national program of long-
term (> 5 years) monitoring of macroalgal communi-
ties, rates of growth and primary production, and the
contribution of seaweed-based production to coastal
food webs.
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INTRODUCTION

 

The marine macroalgal flora in New Zealand is rich and
diverse, with a high degree of endemism. These algae
are part of globally unique coastal ecosystems ranging
from cool temperate seas in the south to subtropical
waters in the north. Here we assess the status of
research on New Zealand seaweeds, identify gaps in
our knowledge that hinder phycological progress, and
make recommendations for future research. This review
is split into four major sections: (i) systematics and
biogeography; (ii) ecology (species assemblages and
top-down processes controlling macroalgal communities);

(iii) physiology and physiological ecology (environmental
control or bottom up-processes); and (iv) seaweed uses
including aquaculture and seaweed extracts. At the
end of each major section we make recommendations
for future study. We have referred mainly to published
literature but recognize that there is a wealth of
information in the form of unpublished theses and
reports. The locations referred to in the text are
indicated on Figure 1.

 

SYSTEMATICS AND BIOGEOGRAPHY

Historical perspective

 

The New Zealand macroalgal flora has received rela-
tively little detailed taxonomic attention. Prior to Adams
(1994), the only complete illustrated treatments of
macroalgae from New Zealand (both the sub-antarctic
islands and mainland New Zealand) were by Harvey and
Hooker (1845) and Harvey (1855). An overview of the
history of marine botany in New Zealand from the time
of Cook’s first voyage to New Zealand in 1769 is given
by Adams (1994). The contributions of V. W. Lindauer
were particularly significant during the mid-twentieth
century (Cassie 1971; Cassie Cooper 1995). The Algae
Nova-Zelandicae Exsiccatae distributed by Lindauer
between 1939 and 1953 has served as a reference set
of New Zealand algae in both national and interna-
tional institutions, with 38 of the 350 sheets having
some level of type status (Nelson & Phillips 1996).

Early collections of New Zealand algae are housed in
a number of European herbaria, particularly the Agardh
Herbarium in Lund, Trinity College, Dublin and the Natural
History Museum, London. Locating and documenting
the type material of New Zealand taxa remains an issue
(e.g. Nelson 

 

et al

 

. 1998; Nelson & Phillips 2001).
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In the first of a series of flora treatments ‘Marine
Algae of New Zealand’, Chapman (1956) treated the
Myxophyceae (Cyanobacteria) and the Chlorophyceae.
He recognized 92 endemic species in a flora of 161
green algae, including many new entities (species,
subspecies, varieties, forms and ecads), a number of
which subsequent authors have had difficulty recogniz-
ing. The underlying problems in the systematics of New
Zealand green algae were highlighted by Adams (1994)
in her treatment of the seaweed flora. The most
speciose genera are also the ones with the most serious
taxonomic problems (e.g. 

 

Enteromorpha, Ulva, Mono-
stroma, Cladophora, Bryopsis, Chaetomorpha

 

).

The Phaeophyceae, published as the second part of
the ‘Marine Algae of New Zealand’ series, served as an
excellent foundation document and reference text for
the brown seaweeds (Lindauer 

 

et al

 

. 1961). Following
the publication of Adams (1994) there have been three
endemic brown algae described from the New Zealand
region: 

 

Zonaria aureomarginata

 

 (Phillips & Nelson 1998),

 

Landsburgia ilicifolia

 

 (Nelson 1999a) and 

 

Margin-
ariella parsonsii

 

 (Nelson 1999b). Recently, 

 

Giraudy-
opsis stellifera

 

 was recorded from collections made at
Stewart Island (Broom 

 

et al

 

. 1999b): this is the first
record of a macrophytic chrysophyte from the New
Zealand region.

 

Fig. 1.

 

Map of New Zealand

showing locations mentioned in

the text. 1, Leigh, incorporating

Goat Island Marine Reserve;

2, Dunedin, incorporating Port

Chalmers and Otago Harbor.
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Chapman and coworkers published four parts in the
Marine Algae of New Zealand series dealing with
sections of the red algal flora (Chapman 1969;
Chapman & Dromgoole 1970; Chapman & Parkinson
1974; Chapman 1979). A fifth volume was intended to
be published to cover the Ceramiales. As noted by
Parsons (1985a, 1985b), many of the genera covered
in Chapman’s treatments require extensive revision as
the volumes were essentially compilations from widely
scattered literature and contained little original
research.

Treatments of New Zealand red algae published
after Adams (1994) include work on 

 

Porphyra

 

 (Nelson
1993; Broom 

 

et al

 

. 1999a, 2002; Nelson 

 

et al

 

. 2001),

 

Pyrophyllon

 

 and 

 

Chlidophyllon

 

 (Nelson 

 

et al

 

. 2003),

 

Curdiea

 

 (Nelson & Knight 1997; Nelson 

 

et al

 

. 1999),

 

Pleurostichidium, Adamsiella

 

 (formerly 

 

Lenormandia

 

)
(Phillips 2000, 2002), 

 

Abroteia

 

 and 

 

Nancythalia

 

 (Millar
& Nelson 2002), 

 

Gelidium

 

 (Nelson & Farr 2003).
Systematic studies carried out in Australia have also
contributed to knowledge about New Zealand red algae
(e.g. Guiry & Womersley 1993; Johansen & Womersley
1994; Womersley 1994, 1996, 1998, 2003).

Recent studies have employed not only traditional
morphological and anatomical approaches to algal
taxonomy, including culture techniques (e.g. Knight &
Nelson 1999), but also have used molecular sequence
data to develop phylogenetic hypotheses as well as to
inform understanding of species boundaries (e.g. Fred-
ericq & Ramirez 1996; Broom 

 

et al

 

. 1999a; Candia

 

et al

 

. 1999; Broom 

 

et al

 

. 2002). Chemotaxonomy has
been useful in several taxonomic groups, such as

 

Curdiea

 

 (Falshaw 

 

et al

 

. 1998), 

 

Gelidium

 

 (Nelson 

 

et al

 

.
1994) and 

 

Gracilaria

 

 (Wilcox 

 

et al

 

. 2001).

 

Diversity

 

Table 1 summarizes the numbers of genera and species
currently recognized within New Zealand, including the
numbers of alien species. These figures should be used
with the utmost caution: in the absence of modern
systematic studies it is not clear how the current estimates
of species numbers reflect the actual biodiversity of
New Zealand macroalgae. In genera where research is
currently underway (e.g. 

 

Porphyra, Bangia, Gelidium

 

) it
is clear that there are many undescribed species that
require study and circumscription.

Although the Phaeophyceae are the best known
group in New Zealand, there is no doubt there are more
species to be discovered. In the past 15 years new
species belonging to some of the largest and most con-
spicuous genera have been discovered and described,
for example, two species of 

 

Lessonia,

 

 and one each of

 

Marginariella, Landsburgia and Zonaria

 

.

 

Significant features of distribution/
biogeography

 

Laing (1895, 1927) was the first person to attempt an
analysis of the biogeography of the New Zealand
seaweed flora. As a step to understanding distribution
of macroalgae in the New Zealand region, over the past
30 years a series of accounts have been published,
providing vouchered lists of species and summarizing
available information for portions of the New Zealand
region (Adams 1972; Adams 

 

et al

 

. 1974; South & Adams
1976; Nelson & Adams 1984; Parsons & Fenwick 1984;
Adams & Nelson 1985; Hay 

 

et al

 

. 1985; Nelson & Adams
1987; Nelson 

 

et al

 

. 1991; Nelson 

 

et al

 

. 1992; Neale &
Nelson 1998; Nelson 

 

et al

 

. 2002). In a three tiered

 

Table 1.

 

Total number of genera and species of marine macroalgae currently known in New Zealand, and the proportion of the marine

macroalgal flora that are endemic and alien

Red Green Brown

Genera 210 42

 

†

 

80
Species 483 134 153
Endemic genera 6 1 7
Endemic species 180 37 48
Estimated no. undescribed species 75 ? 13
Alien species 11 1 10

 

Antithamnionella ternifolia Codium fragile

 

 ssp. 

 

tomentosoides Asperococcus bullosus
Champia affinis Chnoospora minima
Chondria harveyana Colpomenia durvillaei
Griffithsia crassiuscula Cutleria multifida
Polysiphonia brodiaei Dictyota furcellata
Polysiphonia constricta Hydroclathrus clathratus
Polysiphonia harveyii Punctaria latifolia
Polysiphonia senticulosa Sargassum verruculosum
Polysiphonia sertularioides Striaria attenuata
Polysiphonia subtilissima
Solieriaceae sp. indet.

Undaria pinnatifida

 

†

 

Numbers of genera and species for the green algae likely to be overestimated.
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analysis of the macroalgal flora, Nelson (1994) dis-
cussed the distribution of 100 large brown algae within
the New Zealand archipelago as well as examining the
distribution patterns found in southern hemisphere
Laminariales. The most serious limiting factor in a
comprehensive analysis of the flora and its relation-
ships is the level of systematic knowledge, a point that
has been made repeatedly (Parsons 1985a, 1985b;
Nelson 1994, in press a, in press b, in press c; Adams
1994).

The antiquity of the red algae, and the diversity of
evolutionary histories represented among these orders
and families, presents a very complex setting in which
to develop hypotheses about biogeographic relation-
ships. In addition, the poor state of knowledge and the
critical lack of monographic studies of most red algal
taxa in New Zealand places a severe constraint on
biogeographic analyses of the flora. Hommersand
(1986) hypothesized about the timing of distribution
events that link the floras of the West Cape region of
South Africa with Tasmania, South Australia and New
Zealand. Using evidence from 

 

rbc

 

L sequence analyses
and morphological studies, Hommersand 

 

et al

 

. (1999)
considered there is support for the origin of the
Gigartinaceae being in the Pacific Ocean along the
eastern and southern edge of Gondwana, with a later
distribution along the Pacific coast of South and North
America. As a result of recent phylogenetic analyses
of New Zealand 

 

Bangia

 

, a southern origin for 

 

Porphyra

 

and 

 

Bangia

 

 has been postulated (Broom 

 

et al

 

. 2004).
Entwisle and Huisman (1998) observed that phylo-
genetic hypotheses are an integral part of good system-
atics and cautioned that phycologists should be extremely
circumspect in proposing biogeographic hypotheses.

 

Alien species

 

Of the 22 adventive species of seaweed currently
recognized in New Zealand (Table 1) 11 species are
red algae (Nelson 1999c; McIvor 

 

et al

 

. 2001; Nelson

 

et al

 

. 2004). None of these are considered to pose a
serious risk to native flora or fauna. In some cases they
are locally abundant but restricted in their distribution
(e.g. 

 

Chondria harveyana

 

). Only one green marine
macroalga has been reported as a naturalized alien in
New Zealand waters – 

 

Codium fragile

 

 ssp. 

 

tomen-
tosoides

 

. The impact and risk presented by this species
is far from clear (Nelson 1999c); although it has been
suggested that it has become widespread in northeast-
ern North Island (Trowbridge 1995), there are very few
specimens in collections or vouchered records to sub-
stantiate its spread. The aquarium seaweed 

 

Caulerpa
taxifolia

 

 has been introduced into New Zealand in the
past, but was not the same strain that has been
invasive in the Mediterranean, and to date it appears to
be have been restricted to growth within aquaria in
New Zealand (Nelson & Broom 2002).

Ten of the 22 adventive macroalgae recognized in
New Zealand belong to the Phaeophyceae (Nelson
1999c; Nelson 

 

et al

 

. 2004). Of these species, eight
appear to pose little or no risk to the native flora,
apparently not reproducing rapidly nor spreading far
from their points of introduction. The impact of 

 

Colpo-
menia durvillaei

 

 is less clear. This is a seasonal
species, and disappears for some months. In late
winter/early spring this species has been observed to
form dense populations (e.g. Mahia, East Cape, Wel-
lington) and appears to dominate substrata in a broad
intertidal band.

The Asian kelp 

 

Undaria pinnatifida

 

 is clearly the
most serious algal pest species to have established in
New Zealand. It combines a very high reproductive
output with a tolerance of a wide range of growing
conditions, enabling it to function as a very successful
‘weed’ species. From its initial introduction and recog-
nition in Wellington Harbor in 1987, it has spread over
the past 13 years to have been recorded from the
Coromandel Peninsula, Gisborne, Napier, Wellington,
Picton and the Marlborough Sounds, Kaikoura, Lyttel-
ton, Timaru, Oamaru, Port Chalmers, Bluff and Stewart
Island (Hay & Luckens 1987; Hay 1990a; Forrest 

 

et al

 

.
2000).

 

Gaps in knowledge and scope for future 
research

 

There is a critical need for monographic studies of
genera and families of New Zealand red algae, with
serious shortfalls in virtually all families. The non-
geniculate coralline algae are poorly known in New
Zealand. Given the ubiquity of this group throughout
low intertidal and subtidal shores and their apparent
ecological significance, implicated in the settlement
and development of invertebrates such as paua (

 

Hali-
otis

 

 spp.), it is important to understand their distribu-
tion and diversity (regional and ecological).

Studies on the Gigartinaceae over recent years
have resulted in amended generic concepts with many
species previously placed in 

 

Gigartina

 

 being moved
to the genera 

 

Chondracanthus, Sarcothalia, Mazzaella
and Chondrus

 

 (Fredericq 

 

et al

 

. 1996; Hommersand

 

et al

 

. 1993, 1994, 1999). These studies have included
some representatives of New Zealand taxa. However,
the results from this work do not yet allow the
placement of all New Zealand members of the Gigarti-
naceae into clearly defined genera. There is an urgent
need to resolve both generic and species concepts for
the 23 taxa currently recognized in this family, given
the diversity of the family throughout New Zealand, as
well as the commercial interest in these carrageeno-
phytes. At present the lack of systematic, biological
and ecological information is a serious bottleneck to
the development of the economic potential of these
algae.
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Research on the genera 

 

Porphyra

 

 and 

 

Bangia

 

 has
uncovered unexpected diversity within the New Zealand
region (Broom 

 

et al

 

. 1999a; Farr 

 

et al

 

. 2001, 2003;
Nelson 

 

et al

 

. 2001, 2004). Given the cultural signifi-
cance of 

 

Porphyra

 

 to Maori and its use internationally
as a food crop, there is a need to gain a fuller under-
standing of these taxa. Research is currently underway
on endophytic brown algae with culture studies, ultra-
structural investigations and molecular sequencing,
and a number of new taxa will be recognized as a result
of this work (S. Heesch, unpubl. data, 2002). The
crustose brown algae in New Zealand have received very
little attention, as have the morphologically simple
filamentous species. It will be necessary for research on
these algae to include a variety of approaches including
studying the growth of species in culture. Although the
Fucales are conspicuous elements of the coastal flora,
there remain taxonomic problems to be addressed with a
number of members of this order. The systematics of
almost all green algae in New Zealand require attention.
Parsons (1985b) considered that once the green algae
are revised fewer species will be recognized in New
Zealand, although there are also unrecorded species and
new species that will require description.

Although collections have now been made through-
out the New Zealand botanical region there remain
areas of coastline that are largely unexplored because
of access difficulties, and the seasonal coverage of
collections for many of the offshore islands, including
the Chatham Islands, is very poor.

 

ECOLOGY

 

Ecological studies of New Zealand seaweeds began in
the early 20th century. Over the next 40–50 years a
large number of descriptive intertidal studies were
carried out, predominantly in the northeastern region of
the North Island. These studies were largely qualita-
tive, focusing on the relative abundance and distribu-
tion of individual species, or species assemblages.
From the 1960s onwards, algal populations and com-
munities began to be described in terms of density or
percentage cover, but only later did studies involving
experimental ecology appear in the literature.

 

Algal abundance and distribution

 

The locations of studies providing quantitative descrip-
tions of algal abundance around New Zealand are given
in Table 2. Qualitative studies are listed below. Gener-
alized descriptions of the intertidal ecology of the New
Zealand coastline are provided by Oliver (1923), Moore
(1961) and Knox (1960, 1963). In specific localities,
many authors have described the intertidal algal zona-
tion patterns and/or estimated abundance. In the North
Island, these include Northland (Bergquist 1960a),
the Hauraki Gulf (Chapman 1950; Dellow 1950a;

Carnahan 1952; Trevarthen 1953; Chambers 1955;
Dellow 1955; Bergquist 1960b; Dromgoole 1964) and
Piha (Beveridge & Chapman 1950). Studies have also
been conducted at the Poor Knights Islands (Cranwell
& Moore 1938), and the Coromandel Peninsula (Dellow
1950b; Turnbull 1950). In the South Island descrip-
tions of intertidal ecology are provided for localities in
Banks Peninsula (Knox 1953), Otago (Batham 1956,
1958) and Fiordland (Batham 1965).

Patterns of macroalgal distribution and abundance
have also been qualitatively described in relation to
wave exposure (Silvester 1963; Beever 

 

et al.

 

 1971; Grace
& Puch 1977; Creese & Ballantine 1986) and rock type
(Silvester 1963). Generalized descriptions of algal zona-
tion in various habitat types are provided by Ayling
(1974a, 1974b, 1975a, 1975b). Brief descriptions
of aspects of autecology are available for 

 

Pterocladia
lucida

 

 and 

 

Pterocladiella capillacea

 

 (previously 

 

Ptero-
cladia

 

) (Moore 1944a, 1944b), 

 

Codium

 

 spp. (Dellow
1953), 

 

Lessonia tholiformis (Hay 1989), and the adven-
tive kelp Undaria pinnatifida (Hay & Luckens 1987).

Descriptive studies of subtidal algae are less
common, but include reports by Bergquist (1960b),
Grace (1966, 1972, 1983), Grace and Grace (1976),
Grace and Puch (1977) and Grace and Whitten (1974)
for localities in the northeast of the North Island.

Reproductive ecology and population 
dynamics
The abundance and distribution of algal assemblages
cannot be understood without first gaining a knowledge
of the life histories and dynamics of the species
involved (Schiel 1990). Spore release, spore dispersal,
successful recruitment, reproduction and survival are
all critical stages in the establishment and main-
tenance of algal populations. However, these factors,
particularly spore release and dispersal, have been
little quantified for New Zealand seaweeds.

Aspects of the timing and scale of fertility and
recruitment are best known for members of the Phaeo-
phyceae: Durvillaea sp. (Hay & South 1979), Ecklonia
radiata (Novaczek 1984), E. radiata, Landsburgia quer-
cifolia, Sargassum sinclairii and Carpophyllum spp.
(Schiel 1988), Xiphophora gladiata (Gillanders & Brown
1994), Pseudolithoderma sp. (Williamson & Creese
1996) and Carpophyllum flexuosum (Cole et al. 2001).
For the Rhodophyta, seasonal abundance has been
quantified for Porphyra ‘columbina’ (Brown et al. 1990),
and for each life-history phase of Gracilaria chilensis
(as G. sordida) (Nelson 1989; Pickering et al. 1990).
There have been no such studies for the green macro-
algae in New Zealand.

Longevity, survivorship and mortality have been
quantified for only four species: Durvillaea antarctica
(Hay 1979b), Sargassum sinclairii, Carpophyllum mas-
chalocarpum (Schiel 1985) and C. flexuosum (Cole et al.
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Table 2. A summary of studies reporting quantitative macroalgal abundance at various locations in New Zealand

Reference Location Species/assemblage Measure of abundance Factors considered

Andrew & Choat (1982) Leigh, Northeastern NZ Macroscopic browns Density/2 m2 Time, grazing
Andrew & Choat (1985) Leigh, Northeastern NZ Ecklonia radiata Density/m2 Site
Andrew & MacDiarmid (1991) Leigh, Northeastern NZ Ecklonia radiata Density/m2 Site

Carpophyllum
maschalocarpum

C. angustifolium
Sargassum sinclairii

Ayling (1981) Leigh, Northeastern NZ Ephemeral algae % cover Site, time, grazing
Coralline turf
Crustose corallines

Babcock et al. (1999) Northeastern NZ Ecklonia radiata Density/m2 Site, habitat, time
Choat & Ayling (1987) Northeastern NZ Large brown algae Density/m2 Exposure
Choat & Schiel (1982) Three Kings Ecklonia radiata Density/m2 Depth, site

Northeastern NZ ( × 4) Lessonia variegata
Owhiro Bay, Wellington Carpophyllum

angustifolium
C. flexuosum
C. maschalocarpum
C. plumosum
Landsburgia quercifolia
Sargassum johnsonii
S. sinclairii
Sargassum sp.

Coates (1998) Otago Peninsula Combined algae % cover Country, exposure
Cole et al. (2001) Northeastern NZ Carpophyllum flexuosum Density/m2 Site, exposure, depth
Davidson & Chadderton (1994) Nelson region Carpophyllum

maschalocarpum
Density/m2 Site, substrate

Ecklonia radiata
Coralline algae
Foliose red algae
Other brown algae

Gillanders & Brown (1994) Otago Xiphophora gladiata Density/m2 Time
Hay (1994) Various Durvillaea antarctica Density/m2 Wave force
Hay & South (1979) Kaikoura, Otago Durvillaea antarctica Density/m2 Time, clearance
Hay & Villouta (1993) Wellington, Timaru,

Oamaru
Undaria pinnatifida Density/m2 Site, time, depth

Hayward (1971) Northwestern NZ Apophlaea sinclairii % cover Shore height, wave action
Carpophyllum

maschalocarpum
Microdictyon mutabile
Porphyra columbina
Splachnidium rugosum
Xiphophora chondrophylla
Encrusting calcareous

algae
Small red algae

Kotua-Dickson (1984) Northeastern NZ Carpophyllum flexuosum Density/m2 Depth, exposure, site
C. maschalocarpum % cover
C. plumosum
Ecklonia radiata
Lithothamnion/pink paint

Menge et al. (1999) South Island east coast 
( × 2)

Red crust % cover Coast, site, shore height

South Island west coast 
( × 2)

Coralline crust
Corallina officinalis
Foliose reds
Filamentous green

Nelson (1989) Wellington ( × 2) Gracilaria sordida 
(= chilensis)

Density/m2 Time, reproductive state

Novaczek (1984) Northeastern NZ Ecklonia radiata Density/m2 Site, depth
Paine (1971) Northwestern NZ Coralline algae Proportion cover Stichaster removal

Gigartina alveata
Pachymenia lusoria
Ralfsia verrucosa
Ulva sp.
Durvillaea antarctica
Other algal species
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Table 2. Continued

Reference Location Species/assemblage Measure of abundance Factors considered

Pickering et al. (1990) Southland Gracilaria sordida 
(= chilensis)

Density/m2

Time, reproductive state

Raffaelli (1979) Northeastern NZ Algal diversity index Presence/absence in
quadrats

Site, shore height, grazing

Otago Peninsula
Saies (1973) Northeastern NZ Apophlaea sinclairii % cover (kite diagrams) Site, shore height

Carpophyllum
angustifolium

Codium adhaerens
Gelidium pusillum
Gigartina alveata
Laurencia sp.
Melanthalia abscissa
Nemastoma oligarthra
Splachnidium rugosum
Ulva lactuca
Xiphophora chondrophylla
Coralline paint

Saies et al. (1972) Northeastern NZ Apophlaea sinclairii % cover (kite diagrams) Site, shore height
Bostrychia sp.
Carpophyllum angustifolium
Lomentaria sp.
Pterocladia capillacea
Ulva lactuca
Xiphophora chondrophylla
Coralline paint
Coralline turf

Schiel (1982) Northeastern NZ Ecklonia radiata Density/m2 Depth, echinoids
Carpophyllum

angustifolium
C. maschalocarpum
C. plumosum
Cystophora torulosa
Landsburgia quercifolia
Sargassum sinclairii

Schiel et al. (1986) Kermadec Islands Foliose and filamentous
algae

% cover Depth

Encrusting red algae
Schiel et al. (1995) Chatham Islands Carpophyllum flexuosum % cover Site, depth

C. maschalocarpum Density/m2

C. plumosum
Landsburgia spp.
Lessonia tholiformis
Macrocystis pyrifera
Xiphophora gladiata
Laminarians
Fucaleans
Understorey algae

Schiel & Hickford (2001) Kaikoura Carpophyllum
maschalocarpum

% cover Site, coast, depth

Banks Peninsula Caulerpa brownii Density/m2

Ecklonia radiata
Landsburgia quercifolia
Lessonia variegata
Macrocystis pyrifera
Marginariella spp.
Sargassum sinclairii
Coralline flat
Mixed algae
Algal groups

Fiordland Xiphophora gladiata % cover Site, depth
Cystophora congesta Density/m2

Carpophyllum flexuosum
Lessonia sp.
Ecklonia radiata
Fucaleans
Laminarians
Understorey algae
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2001). In northeastern New Zealand mass mortality
within Ecklonia radiata populations has been docu-
mented on several occasions (e.g. Cole & Babcock
1996). Viral pathogens (Easton et al. 1997) and
amphipod grazing (Haggitt & Babcock 2003) have
been implicated in these dieback events.

Population and community ecology

Algal habitats for marine invertebrates and fish
Macroalgae play an important role in structuring the
marine environment for other organisms and influence
these organisms at various stages of their lifecycles.

The larvae of the common New Zealand sea urchin
(Evechinus chloroticus) settle on coralline algae in
preference to other substrata such as oyster shells,
rock or plastic (Lamare & Barker 2001) and their
survival rates are greater on coralline flats than in deep
(> 15 m) reefs or dense Ecklonia radiata beds occur-
ring between 8 and 12 m (Andrew & Choat 1985).
Larvae of the green-shell mussel Perna canaliculus also
settle on macroalgae in preference to rock, and settle
in higher numbers on algae with filamentous and
branched morphologies (e.g. species of Champia,
Gigartina, Laurencia and Corallina) than on broad-
bladed species such as Ulva, Durvillaea, Pachymenia
and Aeodes (Paine 1971).

Table 2. Continued

Reference Location Species/assemblage Measure of abundance Factors considered

Schiel & Hickford (2001) Chatham Islands Carpophyllum flexuosum % cover Site, depth
C. maschalocarpum Density/m2

C. plumosum
Landsburgia spp.
Lessonia tholiformis
Macrocystis pyrifera
Xiphophora gladiata
Fucaleans
Laminarians
Understorey algae

Schiel & Taylor (1999) Kaikoura coast ( × 2) Hormosira banksii % cover Site, season, trampling
Coralline turf
Encrusting corallines
Other algae

Shears & Babcock (2002) Northeastern NZ Coralline turf % cover Site, time, urchin removal
Crustose corallines
Carpophyllum flexuosum
Ecklonia radiata
Halopteris virgata
Small seasonal brown

algae
Shears & Babcock (2003) Northeastern NZ Ecklonia radiata Density/m2 Depth, time

Fucaleans
Carpophyllum spp. % cover Reserve status, time
Turfing algae
Mixed algae
Kelp forest

South & Hay (1979) Auckland Durvillaea antarctica Density/m2 Site, wave action
Kaikoura ( × 3)
Westland
Otago
Stewart island

Starling (1968) Northeastern NZ Various % cover (scale only) Site
Staveley Parker (1976) Northeastern NZ Apophlaea sinclairii % cover/no. individuals

(kite diagrams)
Site, shore height

Carpophyllum
angustifolium

Hormosira banksii
Melanthalia abscissa
Splachnidium rugosum
Ulva lactuca
Xiphophora chondrophylla
Coralline paint
Coralline turf

Trowbridge (1995) Northeastern NZ Corallina % cover –
Hormosira banksii

Williamson & Creese (1996) Northeastern NZ Pseudolithoderma sp. % cover Site, substrate,
colonization
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Experimental work involving the addition and
removal of macroalgae indicates that recruitment of
juveniles of the carnivorous temperate reef fish Noto-
labrus celidotus (as Pseudolabrus celidotus) in north-
eastern New Zealand (Leigh) is greatly enhanced in
the presence of macroalgae (predominantly Ecklonia
radiata and Carpophyllum spp.) (Jones 1984). Further-
more, juvenile and adult N. celidotus are more abun-
dant in dense compared to sparse macroalgal beds
(Choat & Ayling 1987).

The presence or absence of macroalgae influences
where adult fish live on temperate reefs and in what
numbers (see Jones 1988 for a review on the ecology
of rocky reef fish in northeastern New Zealand).
Herbivorous fish abundance is generally greater in
fucalean and laminarian-dominated shallows (0–5 m
depth), than in either coralline flats (5–10 m depth)
or kelp (Ecklonia radiata) forests at >10 m depth
(Jones 1988; Meekan & Choat 1997; Cole 2001).
Macroalgae also influence the composition of fish
assemblages. In areas of northern New Zealand that
are dominated by large brown algae, small algal-
picking and plankton-feeding fish dominate with
fewer large benthic-feeding fish present. On coralline
flats the situation is reversed, with large benthic-
feeding fish being more prevalent (Choat & Ayling
1987). Furthermore, a negative correlation has been
found between algal density and numbers of large
(> 150 mm) carnivorous reef fish in contrast to the
positive correlation observed for the smaller Notola-
brus celidotus (Choat & Ayling 1987).

Attached macroalgae and off-shore drift algae are
also habitats for animals. The composition and size of
mobile epifauna vary among species of attached
seaweed (Taylor 1998a) and are influenced by algal
morphology (Taylor & Cole 1994). Seaweed density
may also influence the dispersal of epifauna (Taylor
1998b). Offshore, drift algae provide habitat to fish
and invertebrates, both of which are more abundant
around drift algae than in adjacent open water (Kings-
ford & Choat 1985; Kingsford 1992). It is postulated
that drift algae are an important means of movement
for presettlement fish, and may therefore influence
recruitment of fish that inhabit nearshore areas as
adults (Kingsford 1992).

Algae–algae interactions
The role of interspecific interactions in the maintenance
and establishment of algal communities has received
little attention in New Zealand. The exceptions are
experiments in which the canopies of Ecklonia radiata,
Carpophyllum maschalocarpum and C. angustifolium
were removed, and the subsequent recruitment of
these three species and of Landsburgia quercifolia
were recorded (summarized by Schiel 1988, 1990).
The species, level and order of succession varied
according to the frequency and season of removal, but

in most cases recruitment was substantially greater in
cleared areas than under intact canopies (Schiel
1988). There have been only two studies on intra-
specific competition between New Zealand seaweeds:
Ecklonia radiata, Sargassum sinclairii and Carpophyl-
lum maschalocarpum (Schiel & Choat 1980; Schiel
1985). Schiel and Choat (1980) were the first to
suggest that seaweed populations do not follow the
–3/2 self-thinning law that applies to terrestrial plants,
although this finding is not the case for all seaweed
communities (e.g. Cousens & Hutchings 1983; Scro-
sati & Servière-Zaragoza 2000, and references therein).

Algae–echinoid interactions
The distribution and abundance of the New Zealand
sea urchin (Evechinus chloroticus, Maori name, kina)
in relation to stands of large brown algae has been well
documented, particularly in northern New Zealand (see
review in Andrew 1988). In this region there is a
characteristic subtidal pattern with fucalean species of
Carpophyllum, Sargassum and Landsburgia forming
dense stands in the shallow subtidal (approximately
0–7 m) and coralline flats at ∼8 m and below (e.g. Ayling
1981; Choat & Schiel 1982; Schiel 1982; Andrew
1988; Schiel 1990). Coralline flats are E. chloroticus-
dominated areas with up to 100% cover of encrusting
or turfing coralline algae. These areas are generally free
of large brown algae, giving rise to the inappropriate
terms ‘barrens’ or ‘barren grounds’ (see Choat & Schiel
1982; Schiel & Foster 1986). Below 10 m where
E. chloroticus densities are lower, large stands of
laminarian algae occur, principally Ecklonia radiata.
This kelp often exhibits a bimodal distribution, occur-
ring in higher densities in the 0–7 m zone and below
8–10 m, with mixed laminarian/fucalean stands at
∼3–6 m (Choat & Schiel 1982).

The role of sea urchin species in maintaining
coralline flats is well documented. In northeastern New
Zealand experimental removal or exclusions of adult
Evechinus chloroticus from coralline flats resulted in
increased densities of large brown algae (Ecklonia
radiata, Sargassum sinclairii and species of Carpophyl-
lum) (Andrew & Choat 1982; Andrew & MacDiarmid
1991; Shears & Babcock 2002), of ephemeral and
coralline turf algae (Ayling 1981; Shears & Babcock
2002), and of small brown and red algae of the genera
Halopteris, Dictyota, Colpomenia, Asparagopsis and
Champia (Shears & Babcock 2002). In Fiordland, two
years of E. chloroticus removal in a range of habitats
and depths led to significant increases in the density of
kelps, crustose, turfing and herbaceous algae (Villouta
et al. 2001). There is some debate regarding the role
of urchin dietary preferences in determining the per-
sistence of algal species at local scales (Schiel 1982;
Schiel 1990; Cole & Haggitt 2001).

In regions of New Zealand close to, or south of,
Cook Strait the above-mentioned subtidal pattern is not
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characteristic (Schiel 1990). At Owhiro Bay in Welling-
ton, for example, Evechinus chloroticus are not common
and the 5–10 m depth range, instead of being domi-
nated by corallines, contains mixed stands of laminar-
ian and fucalean algae (Choat & Schiel 1982). At
Kaikoura, Banks Peninsula, the Chatham Islands and
Fiordland, extensive coralline flats are not characteristic
but corallines do occur in small (< 25 m2) patches
(Schiel et al. 1995;  Schiel & Hickford 2001), or in
larger areas in localized parts of Fiordland (e.g. Villouta
et al. 2001). In those areas where coralline flats are
not common, Schiel and Hickford (2001) suggest that
interactions between algae become more important in
the regulation of community structure; however, preda-
tion by E. chloroticus may also be important (see
earlier section).

Parallels have been drawn between the trophic
cascades in the Northern hemisphere and the New
Zealand situation (see Andrew 1988; Babcock et al.
1999, and authors therein). In the Northern Hemi-
sphere subtidal community structures are controlled by
a three-tiered trophic cascade in which the sea urchin
populations that control macroalgal communities are
themselves controlled by carnivores such as sea otters
(northwest Pacific), lobsters (north Atlantic) or fish
(Mediterranean) (see Schiel 1990). In New Zealand,
predation by fish has not been considered to exert
sufficient pressure to control the impact of urchin grazing
on macroalgae, and a simpler two-tiered trophic
cascade between Evechinus chloroticus and macroalgae
has been suggested (Andrew 1988; Schiel 1990;
Babcock et al. 1999, and authors therein). However,
more recent studies in northeastern New Zealand
comparing animal and macroalgal communities within
no-take marine reserves and adjacent non-reserved
areas provide indications of a three-tiered cascade
between predatory fish (predominantly Pagrus auratus)
and spiny lobsters (Jasus edwardsii), sea urchins and
macroalgae (Cole & Keuskamp 1998; Babcock et al.
1999; Shears & Babcock 2002, 2003). Furthermore,
macroalgal abundance within the marine reserves has
increased as a consequence of increased predation on
urchins (Shears & Babcock 2003). This finding indi-
cates that over-fishing of predatory fish has resulted in
a simpler ecosystem structure.

Algae–mollusc interactions
The distribution and abundance of macroalgae and
various molluscan grazers has been quantified for
various parts of the country. These include areas
around Dunedin (Raffaelli 1979), three tidal zones at
sites on the east and west coasts of the South Island
(Menge et al. 1999), areas of the Chatham Islands
(Schiel et al. 1995; Schiel & Hickford 2001), Abel
Tasman (Davidson & Chadderton 1994), Kaikoura,
Banks Peninsula, Fiordland (Schiel & Hickford 2001)

and one site in Wellington (Choat & Schiel 1982). In
northern and northeastern New Zealand the density of
various gastropods and large brown algae have also
been quantified in a number of studies (Ayling 1981;
Andrew & Choat 1982, 1985; Choat & Schiel 1982;
Choat & Andrew 1986; Creese 1988; Andrew & Mac-
Diarmid 1991).

Interactions between molluscan grazers and macro-
algae have been reviewed by Creese (1988). Molluscan
grazing appears to exert a lesser influence on subtidal
community structure than urchin grazing, but is still an
important process affecting smaller macroalgal species.
Molluscan grazers suppress algal growth (Watts 1977
in Creese 1988; Ayling 1981; Menge et al. 1999),
limit the upper distributions of some algal species (Hay
1979a; Edwards 1982 in Creese 1988), and their
feeding methods and preferences influence algal com-
munity structure (e.g. Luckens 1974; Raffaelli 1979;
Choat & Andrew 1986). There is evidence that urchins
and gastropods can benefit from coexistence (Andrew
& Choat 1982; Choat & Andrew 1986), and that their
co-occurrence enhances their effect on coralline flats
(Ayling 1981; Choat & Andrew 1986). In intertidal
situations the strength of grazer impacts on macroalgae
is significantly influenced by their level on the shore
(Raffaelli 1979).

Algae–herbivorous fish interactions
Nutritional ecologists determine why fish choose par-
ticular algae as food by examining relationships among
the algal diet, feeding structures and digestive physio-
logy of fish (Choat & Clements 1998). In New Zealand,
work has focused on the determination of fish diets
(Russell 1983), feeding rates (Choat & Clements
1993) and the nutritional quality of the seaweed eaten
by marine herbivorous fishes, not only by measure-
ments of gross algal components such as protein and
energy (e.g. Lamare & Wing 2001), but also by the
interplay between the components of the algae and the
ability of the fish to access, digest and assimilate these
algal components (Zemke-White & Clements 1999;
Zemke-White et al. 1999b, 2000, 2002; Moran &
Clements 2002).

Human impacts
Studies on the impact of humans on macroalgae in
New Zealand have been limited to the effects of marine
reserve protection, trampling by humans and harvest-
ing. In 1975, New Zealand was among the first
countries in the world to establish a marine reserve. In
this no-take reserve at Goat Island, Leigh, where
predatory fish and the spiny lobster Jasus edwardsii are
not removed from ecosystems, algal abundances have
increased as a consequence of increased predation on
echinoid grazers (see above; Babcock et al. 1999;
Shears & Babcock 2002, 2003).
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Intertidal beds of Hormosira banksii are sensitive to
trampling by humans and canopy recovery time is
dependent on the season in which trampling occurred
(Schiel & Taylor 1999). Intertidal coralline turfs are
less sensitive to trampling, but turf height and turf dry
weight declines with higher levels of trampling inten-
sity (Brown & Taylor 1999).

Macroalgae are not intensively harvested in New
Zealand (see Seaweed uses below). While a number of
studies have assessed the impact of harvest methods
and timing from natural populations on subsequent
harvest yield (Hay & South 1979; Nelson & Conroy
1989; Nelson et al. 1990; Schiel & Nelson 1990, and
others therein; Gerring et al. 2001) few have consid-
ered the effects of harvesting on surrounding commu-
nities, nor have the effects of large-scale removal of
beach cast algae been assessed. Porphyra harvest is
considered to have negligible ecological impacts due to
the high shore position of this group (Schiel & Nelson
1990). Complete removal of the dominant mid/low
intertidal Durvillaea antarctica is likely to promote
significant changes in community structure (see Paine
1971), more so if harvesting was carried out during
summer when D. antarctica does not produce gametes
for recolonization (Hay & South 1979; Schiel & Nelson
1990; Hay 1994). The importance of Ecklonia radiata
to marine communities is well documented and the
phenology of this species indicates that the ecological
consequences of harvesting could be significant (Schiel
1988; Schiel & Nelson 1990, and authors therein).
The ecological impacts of harvesting other macroalgae
of economic potential (e.g. Macrocystis, Pterocladia,
Gracilaria, Gigartina and Undaria) are little known.
Gerring et al. (2001) report that removal of Pterocladia
lucida had no significant effect, at the scale they
tested, on the abundance of large brown algae or large
grazers.

Gaps in knowledge and scope for future 
research
There are two clear biases in the ecological work on
New Zealand macroalgae published to date. The first is
geographic with a large majority of the descriptive and
experimental ecological work being on macroalgae from
northeastern New Zealand. This bias is due to the
strong ecological focus of researchers at the University
of Auckland’s Leigh Marine Laboratory over the past
50 years and is currently being addressed on the East
Coast of the South Island by the University of Canter-
bury’s Marine Ecology Research Group (e.g. Schiel &
Hickford 2001), and in Fiordland by the Department of
Marine Sciences, University of Otago.

The second bias is taxonomic; the majority of work
published to date assesses the role of laminarian and
fucalean algae in structuring nearshore communities,
with far fewer studies investigating the ecology of red

seaweeds, and virtually none examining green sea-
weeds. This bias is partially due to identification
issues, with large brown seaweeds being easier to find
and to identify. There are many identification and
taxonomic problems with New Zealand red and green
seaweeds; these are therefore less likely to be chosen
as study subjects.

There have been no true demographic studies on
New Zealand seaweeds (sensu Lobban & Harrison 1994)
and there are relatively few phenological studies.
Seasonal studies of intertidal or subtidal communities
are lacking, with many studies being snapshots in
time. It has recently been noted that the density of
Sargassum johnsonii and Ecklonia radiata at the Three
Kings Islands has varied substantially over the past
30 years (Zemke-White & Clements, unpubl. data,
2003). In 1979 and 2002, E. radiata was absent but
this species was dominant in 1993; a similar trend was
observed for S. johnsonii. These decadal changes in
macroalgal populations are thought to be related to El
Niño events, and they strongly influence the diet of
the herbivorous fish Odax cyanoallix. This finding
highlights the importance of long-term monitoring of
macroalgal communities.

PHYSIOLOGICAL ECOLOGY AND 
PHYSIOLOGY
Marine macroalgae contribute around 35% of coastal
primary production worldwide (Charpy-Roubaud &
Sournia 1990). In temperate waters, the seasonal
patterns of subtidal seaweed growth, and hence pro-
duction, is either controlled directly, or modulated, by
light and seawater nitrogen concentrations (Kain
1989). Environmental factors such as salinity and
water motion influence subtidal seaweed production on
a local scale. For intertidal seaweeds, stresses resulting
from fluctuating temperature, salinity, light, UV and
nutrient availability also affect growth and production
rates. Seasonal patterns of growth rate have been
studied for only a few New Zealand taxa: Porphyra
‘columbina’ (Brown et al. 1990), Gracilaria chilensis
(Pickering et al. 1990), Macrocystis pyrifera (Kain
1982; de Nys et al. 1990, 1991; Nyman et al. 1990;
Nyman et al. 1993; Brown et al. 1997), Undaria
pinnatifida (Stuart et al. 1999; Dean & Hurd pers. obs.
2003) and Durvillaea spp. (Hay 1994 and references
therein).

Growth rates
Growth, erosion and production rates of seaweeds meas-
ured in conjunction with their carbon, nitrogen and
phosphorus content allow estimation of their contribu-
tion to the coastal food webs and to nutrient recycling.
New Zealand research has focused on two members
of the Order Laminariales, Macrocystis pyrifera and



Marine macroalgal research in New Zealand 91

Undaria pinnatifida, both from Otago Harbor, Dunedin.
Growth and primary production rates of these popula-
tions are within the ranges of those reported for these
species in other geographic regions (e.g. Wheeler &
Srivastava 1984; Yoshikawa et al. 2001). Undaria
pinnatifida in Otago Harbor exhibits a seasonal growth
cycle of a winter annual (Dean & Hurd pers. obs. 2003)
with maximum growth rates during winter, which
decline in spring with the onset of sporophyll formation
(Dean & Hurd pers. obs. 2003). For M. pyrifera the
seasonal pattern of blade relative growth rate (RGR) in
Otago Harbor varies between years. Blade RGR during
1986–1987 were similar year-round except for summer
when lower rates were recorded, leading Brown et al.
(1997) to conclude that this pattern represented N-
limited growth similar to that of M. pyrifera in California.
However, our ongoing work on a nearby M. pyrifera
population indicates that between 1998 and 2000,
blade RGR was light-limited during winter and N-
limited from mid-summer, a pattern consistent with
M. pyrifera from British Columbia, Canada (Wheeler &
Srivastava 1984) and the Falkland Islands (van
Tussenbroeck 1989). The high intra-annual variation
seen in growth rates of M. pyrifera illustrate the impor-
tance of long-term (> 1 year) monitoring to gain a
thorough understanding of seasonal patterns.

Durvillaea spp. are ecologically dominant in the
intertidal and shallow subtidal of the South Island and
west coast of the North Island (Hay 1979b; Hay
1994). Standing stocks of Durvillaea at >100 kg/m2

are higher than any other intertidal seaweed commu-
nity (Hay 1994) and, although not measured directly,
this genus must make a very important contribution to
the coastal food chain and nutrient recycling.

Patterns of growth and reproduction, population
density and chemical composition of Porphyra ‘colum-
bina’ gametophytes, and the factors controlling sporo-
phyte growth, have been investigated (Brown 1987;
Frazer et al. 1988; Friedlander et al. 1989; Brown
et al. 1990; Aitken et al. 1991; Frazer & Brown 1995).
Unfortunately, our improved understanding of the taxo-
nomic status of Porphyra means that the Porphyra
collected for these studies could be one of more than

seven species that occur on southern coasts. Further-
more, ‘Porphyra subtumens’ studied by Friedlander
et al. 1989) and Aitken et al. (1991) has been moved
from the order Bangiales and placed in a new genus in
the Erythropeltidales, Pyrophyllon subtumens (Nelson
et al. 2003).

Relative growth rates of Gracilaria chilensis (as
G. sordida) at Mokomoko Inlet, Bluff, varied between
sites and for the different strains used. Overall, RGR
ranged from –7 (i.e. tissue loss) to +5% day–1, rates
that were considered typical of Gracilaria species
(Pickering et al. 1990).

Nitrogen status and acquisition
Nitrogen is considered the nutrient most likely to limit
seaweed growth in temperate coastal waters worldwide
and is the best studied aspect of New Zealand seaweed
physiological ecology. Inorganic nitrogen in New
Zealand coastal surface waters varies seasonally and
this variation is due to changes in nitrate rather than
ammonium, which remains relatively constant year
round (0.5–2 µmol/L, Gillanders & Brown 1994; Brown
et al. 1997; Rees et al. unpubl. data 2003). Nitrate in
New Zealand nearshore waters exhibits the typical
pattern of temperate coastal waters with concentra-
tions being maximal in winter (5–12 µmol/L) and
minimal in summer (0.3–0.5 µmol/L) (Hay 1990b;
Brown et al. 1990, 1997; Gillanders & Brown 1994;
Phillips & Hurd 2003). In Otago, this seasonal pattern
of inorganic nitrogen in seawater is generally reflected
in the total tissue nitrogen content of seaweeds, which
are typically minimal during summer/early autumn and
maximal during winter (Table 3). Seasonal patterns of
nitrogen-limited growth can be implied from the ratio
of tissue carbon (C) and nitrogen (N) (C:N), with higher
ratios indicating greater N-limitation. For the Order
Laminariales, 10–15 indicates N-sufficiency, 16–20
indicates mild N-limitation while values >25 indicate
severe N-limitation (Sjøtun et al. 1996). For Undaria
pinnatifida and Macrocystis pyrifera from Otago
Harbor, the maximum C:N ratio is rarely >20, indicat-
ing only mild N-limitation in summer (Table 3).

Table 3. Tissue carbon (%C), nitrogen (%N) and carbon : nitrogen (C:N) atomic ratio of intertidal and subtidal New Zealand macroalgae

Species Reference Location %C %N C:N

Intertidal
Scytothamnus australis Phillips & Hurd (2003) Otago 32–37 1.2–1.8 22–30
Xiphophora gladiata Phillips & Hurd (2003), 

Gillanders & Brown (1994)
Otago 30–36 1.2–2.2 18–28

Stictosiphonia arbuscula Phillips & Hurd (2003) Otago 27–35 2.8–5 8–15
Apophlaea lyallii Phillips & Hurd (2003) Otago 35–40 2–2.8 17–23
Porphyra ‘columbina’ Brown et al. (1990) Stewart Island and Otago 28–33 1–5 7.4–71
Subtidal
Undaria pinnatifida Dean & Hurd (pers. obs. 2003) Otago Harbor 19–35 1.5–2.9 12–23
Macrocystis pyrifera Brown et al. (1997) Otago Harbor, Otago 22–31 0.9–3.0 9.5–38 : 1

Each study followed %C, %N on a seasonal basis. The ranges are maximum and minimum of average values.
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The potential for nitrogen limitation for intertidal
seaweeds is considered greater than for subtidal sea-
weeds because seaweeds are removed from their nitro-
gen source during low tide (e.g. Lobban & Harrison
1994; Phillips & Hurd 2003). Furthermore, species
growing higher up the intertidal zone are usually
considered more nutrient-limited than low-shore spe-
cies. Consistent with the latter hypothesis, high shore
populations of Porphyra had greater C:N ratios than low
shore populations (Brown et al. 1990), although the
extremely high C:N ratios reported in this case of >70
are probably indicative of a senescing population rather
than severe nitrogen limitation. In contrast, high and
low shore populations of Stictosiphonia arbuscula,
which grows at the same high shore position as
Porphyra sp., had similar C:N ratios of 7–15 and
showed little evidence of nitrogen-limited growth
year round (Phillips & Hurd 2003). For four species
of intertidal seaweed (Stictosiphonia arbuscula,
Apophlaea lyallii, Scytothamnus australis and Xipho-
phora gladiata) nitrogen content was correlated with
height above low water, a trend that is opposite to
Northern hemisphere intertidal communities (Phillips
& Hurd 2003).

The source of nitrogen available to intertidal sea-
weeds varies seasonally, with the inorganic source
ammonium being the preferred in winter, while nitrate
and ammonium are both equally important during
summer. The contribution of the organic nitrogen
source, urea, is negligible during winter but provides
up to 33% of nitrogen to intertidal seaweeds during
summer (Phillips & Hurd 2003). Rates of ammonium
uptake by northeastern New Zealand seaweeds are
lower than Northern Hemisphere seaweeds, for exam-
ple, >3 times lower than seaweeds from the Baltic
(Taylor et al. 1998; Taylor & Rees 1999). Ammonium
is not considered an important nitrogen storage pool
because it may be toxic at high concentrations, but for
intertidal seaweeds from Otago, ammonium pools were
up to three-fold greater than those of nitrate (Phillips &
Hurd 2003). Ammonium excreted by sessile or mobile
marine invertebrates contributes an important N-
source to intertidal (Williamson & Rees 1994) and
subtidal (Taylor & Rees 1998) seaweeds and mobile
epifauna might contribute up to 79% of the nitrogen
budget of the subtidal fucalean seaweed, Carpohyllum
plumosum.

The direct effect of nitrogen on seaweed growth rate
has been investigated for only one species, Gracilaria
chilensis, for which growth rates increased with
increased nitrogen flux (Pickering et al. 1993). In
areas where nitrogen is not limiting (due to nitrogen
inputs from farming, land run-off and sewage), phos-
phate is the nutrient that most likely becomes limiting
to seaweeds (e.g. Lobban & Harrison 1994). There are
no published studies on phosphate uptake by New
Zealand seaweeds.

Light, salinity and temperature
The few studies on the photosynthetic physiology of
New Zealand seaweeds indicate that rates are within
the ranges of Northern hemisphere seaweeds (Taylor
et al. 1999). Rates of photosynthesis under saturating
light have been determined for Cystophora torulosa,
Xiphophora chondrophylla, Melanthalia abscissa, Osmun-
daria colensoi, Pterocladia capillacea, Zonaria turneriana,
Corallina officinalis, Ulva sp. and Enteromorphra sp.
(Taylor et al. 1999). Photosynthesis versus irradiance
curves have been determined for only the adventive
seaweed Undaria pinnatifida (Dean & Hurd pers. obs.
2003). The influences of pH and inorganic carbon
concentration on photosynthesis have been examined
for Carpophyllum maschalocarpum and C. flexuosum
(Dromgoole 1978a), the effect of oxygen concentration
on photosynthesis was tested for four Carpophyllum
species, Sargassum sinclarii, E. radiata, Scytothamnus
australis and Codium fragile (Dromgoole 1978b), and
photosynthesis under fluctuating light was determined
for Carpophyllum maschalocarpum, E. radiata and Hor-
mosira banksii (Dromgoole 1987, 1988). Neither the
effects of salinity nor temperature on physiology,
growth or production rates of New Zealand seaweeds
have been examined.

Water motion
Wave-swept shores are typical of much of New Zea-
land’s coastline and research has focused on how
seaweeds are adapted to withstand the large forces
associated with breaking waves. Durvillaea spp. grow
an order of magnitude larger than any other seaweed
inhabiting wave-exposed intertidal sites and can with-
stand wave forces of 300 N (Stevens et al. 2002).
Biomechanical testing has demonstrated that Durvil-
laea stipes are extremely elastic and extensible com-
pared to other seaweeds (Harder et al. 2000). The
forces imparted by breaking waves may be shared by
populations of D. antarctica, thereby reducing the
loading on individuals (Stevens et al. 2004). Zygotes of
D. antarctica attach to the rock substratum more
rapidly than those of Hormosira banksii and Cystophora
torulosa, and greater wave-forces are required to dis-
lodge D. antarctica zygotes (Taylor & Schiel 2003).

In some wave-sheltered, current-dominated estuar-
ies that have become nutrient enriched, drift popula-
tions of Ulva lactuca can reach nuisance levels. Hawes
and Smith (1995) estimated that currents of
0.4–1.2 m s–1 were sufficient to impart the breaking
force of 0.7–0.93 N required to detach U. lactuca.

Stress physiology
The abilities of intertidal seaweeds to withstand the
stresses associated with emersion is related to their
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vertical position on the shore. Dromgoole (1980) was
among the first internationally to demonstrate that
evaporation rates of water from seaweeds in air were
not related to their shore position and thus most
intertidal seaweeds have physiological rather than
morphological mechanisms to tolerate the severe stress
imposed by their environment. The ability of New
Zealand seaweeds to recover metabolic processes fol-
lowing desiccation and freezing increases with increas-
ing shore height (Brown 1987; Frazer et al. 1988), a
pattern typical of intertidal seaweeds from temperate
regions worldwide. The rate of regeneration of antioxi-
dant pools is a key mechanism of stress tolerance of
the high intertidal seaweed Stictosiphonia arbuscula
(Burritt et al. 2002).

Gaps in knowledge and scope for future 
research
There are no published studies on production rates of
New Zealand seaweeds or macroalgal communities and
thus we know little of their contribution to coastal food
webs or nutrient cycling. The six species for which
there are estimates of growth (Macrocystis pyrifera,
Undaria pinnatifida, Durvillaea antarctica, Gracilaria
chilensis and Porphyra ‘columbina’) were examined
largely because of their commercial potential rather
than ecological function. If we are to understand the
contribution of macroalgae to coastal primary produc-
tion in New Zealand, ecologically dominant members
of the Order Fucales and the Rhodophyta should be
targeted and techniques for estimating their growth
and/or production rates in situ developed. For example,
an underwater metabolism chamber could be used to
measure photosynthetic and production rates of indi-
vidual seaweeds or communities, and determine the
effects of nutrient additions on production (Longstaff
et al. 2002). Finally, to further understand the func-
tioning of coastal ecosystems, the fate of seaweed
production should be traced through the coastal food
webs. This can be achieved using carbon and nitrogen
stable isotopes (e.g. Herman et al. 2000; Kaehler et al.
2000).

SEAWEED USES
The major uses of seaweeds throughout the world are
both direct (e.g. as human foods, animal fodder or as
fertilizer) and indirect (as raw materials from which
certain components can be extracted) (Chapman
1970). The outbreak of World War II and the require-
ment to find local supplies of seaweeds for various
uses fuelled the work of L. B. Moore at Botany
Division, Department of Scientific and Industrial
Research (D.S.I.R). She focused particularly on the
agar-bearing genera Pterocladia and Gelidium, and
the kelp Macrocystis, as well as being involved in a

broader examination of seaweeds and their potential
economic uses (Moore 1941, 1942a, 1942b, 1944a,
1944b, 1945, 1946, 1950, 1951, 1953). The eco-
nomic importance of New Zealand seaweeds has been
reviewed several times since (Luxton & Courtney
1987; Schiel & Nelson 1990; Brown 1998; Zemke-
White et al. 1999a). There is currently considerable
commercial interest in producing value-added prod-
ucts from New Zealand seaweeds, such as dietary
supplements and cosmetics.

In the absence of substantial scientific data, the
Ministry of Fisheries has taken a conservative approach
to wild harvesting of seaweeds and since 1971, fishing
permits have been required for the removal of attached
seaweeds from specified areas (Luxton & Courtney
1987). This approach was extended by the introduc-
tion of a moratorium on the issue of new permits in
1988 (Zemke-White et al. 1999a). The moratorium on
the collection of attached seaweeds remains in place
with the enactment of the 1996 Fisheries Act. In
addition, a permit is now also required for the collec-
tion of unattached, free-floating (but not beach-cast)
red seaweeds. Only beach-cast red seaweed can be
taken for commercial purposes without a fishing
permit, as a result of the long-established, and contin-
uing, use of red seaweeds for the production of agar.

Direct uses
In New Zealand, Maori consume species of Porphyra
(karengo), Gigartina (rehia) and Durvillaea (known most
commonly as rimurapa) (Riley 1988), and Crowe
(1997) has described 15 species of New Zealand
seaweeds as edible. Considerable research was under-
taken in the 1990s into the aquaculture of the
adventive Japanese brown seaweed, Undaria pinnatif-
ida (known as wakame), for food use (Zemke-White
et al. 1999a). Although results of seeding and field
trails were positive, this research has not progressed
further due to concerns over the spread of an invasive,
foreign species when its impact on the native New
Zealand flora is not known.

Sheep in New Zealand have been reported to graze
Cystophora, Sargassum and Hormosira and chopped
seaweed has been used as a supplemental cattle feed
(Chapman 1970).

Indirect uses

Fertilizer extracts
Various New Zealand and overseas companies produce
concentrated seaweed extracts for use as fertilizers,
and some use New Zealand seaweed raw materials.
However, a number of seaweed-based products have
been shown to be ineffective by New Zealand scientists
(Feyter et al. 1989).
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Small organic molecules
A number of low molecular weight natural products
have been extracted from New Zealand seaweeds. Four
natural products, including a novel hydroazulenoid
ditepene, have been found in Glossophora kunthii (de
Nys et al. 1993). A crude methanol extract from
Rhodophyllis membranacea was found to have anti-
fungal activity, which was linked to the presence of
several polyhalogenated indoles in the extract (Brennan
& Erickson 1978). A wide range of natural products
has been extracted from both Laurencia thyrsifera
(Blunt et al. 1978a, 1981, 1984a) and Laurencia sp.
cf. L. gracilis (König & Wright 1994). Distinctly differ-
ent compounds have been found in morphologically
similar samples of Laurencia distichophylla from
Northland (Blunt et al. 1984b) and Plocamium carti-
lagineum from Kaikoura (Blunt et al. 1978b, 1985;
Bates et al. 1979). These results may have taxonomic
significance. Glombitza and coworkers have isolated
numerous natural products from a range of New
Zealand seaweeds, including Cystophora retroflexa
and Carpophyllum angustifolium (e.g. Sailler & Glom-
bitza 1999; Glombitza & Schmidt 1999). Knöss and
Glombitza (1993) also isolated phenolsulfatase activity
in four of six New Zealand seaweeds screened. The
amino acid, gigartinine, has been shown to serve as a
chemotaxonomic marker to distinguish two species of
Gracilaria with very similar morphologies (Wilcox et al.
2001).

Polysaccharides
Agar production (mainly from Pterocladia lucida but
also Pterocladiella capillacea) started during the
Second World War when supplies of Japanese agar
ceased (Moore 1944a, 1944b). Agar produced from
attached plants is generally of higher and more uniform
quality than that from beach-cast material and, in
1983, 31% of the seaweed used for agar production
was from attached plants (collected under permit by
divers using snorkels) (Luxton & Courtney 1987). By
2001, the proportion of attached seaweed used had
declined to 15%. Various harvesting strategies for
attached P. lucida have been assessed on a small scale
by Gerring et al. (2001). This study concluded that
harvesting of attached plants from this species could
be sustainable, if managed proactively, but that further
research on a larger scale was required. Tissue and cell
culture of Pterocladia lucida and Pterocladiella capilla-
cea have also been attempted (Liu & Gordon 1987).
The structure of commercial Pterocladia agar has been
studied by Brasch et al. (1981a, 1984a) and enhanced
growth of macroalgal cells on commercial Pterocladia
agar has been reported (Polne-Fuller et al. 1993).

Gracilaria chilensis is another red seaweed growing
in New Zealand that has commercial potential for agar
production. The effects of various conditions on the
growth and agar content of this species (as G. sordida)

have been investigated in culture (Christeller & Laing
1989; Laing et al. 1989; Pickering et al. 1993) and
in the wild (Pickering et al. 1990). Recently, the
biosynthesis of agar polysaccharides in Gracilaria chilen-
sis have been studied extensively (Hemmingson et al.
1996a, 1996b; Hemmingson & Furneaux 1997, 2001).

Carrageenans are another group of industrially
useful polysaccharides that are obtained from certain
red algae. Prior to 1939, the major commercial use of
New Zealand seaweed was the production of seameal
custard using carrageenan from Gigartina species
(Miller 1999). Both the gelling and non-gelling carra-
geenan contents of various New Zealand Gigartina
species have been studied (Pickmere et al. 1973,
1975; Parsons et al. 1977). Recently, the commercial
potential of the carrageenans from Gigartina atropur-
purea has been assessed in two dairy applications
(Falshaw et al. 2003). Small-scale field trials have
indicated the potential of this species for aquaculture
or sustainable wild harvest for carrageenan production
(McNeill et al. 2003) but more research work is
required to confirm this.

The other major seaweed polysaccharide currently
used industrially is alginate, obtained from certain
brown algae. Moore (1942b) speculated that Macro-
cystis pyrifera harvested for fertilizer (Rapson et al.
1942) could also be used for production of alginate.
More recently, the alginate content of various New
Zealand brown algae has been determined. An alginate
content of 20–35% for M. pyrifera is within the range
of other brown algae (McKee et al. 1992) while at
40–60%, Durvillaea spp. have the highest alginate
content of any seaweed (Hay & South 1979; South
1979; South & Hay 1979; Kelly & Brown 2000). Hay
(1979b) investigated the ecology of Durvillaea spp.
and proposed a commercial harvesting strategy. The
effect of harvesting and the historical exploitation of
Durvillaea spp. for alginate production have also been
reviewed by Hay (1994).

Considerable research effort has been directed at
determining the potentially novel structures of poly-
saccharides from the many macroalgae found in New
Zealand. The types of polysaccharide characterized to
date are shown in Table 4 (see individual references for
specific structural details). The determination of poly-
saccharide structures has led to the development of
new analytical techniques, such as formolysis (Brasch
et al. 1984b), reductive hydrolysis (Stevenson &
Furneaux 1991), partial reductive hydrolysis (Falshaw
& Furneaux 1995a) and two-dimensional nuclear mag-
netic resonance spectroscopy (Falshaw et al. 1996).
Unusual polysaccharide structures have also been
shown to have taxonomic significance (e.g. Nelson
et al. 1994, 1999; Hemmingson & Nelson 2002) and,
in some cases, unusual properties. For example, unu-
sually high melting temperatures of agar gels are
related to particular patterns of natural methyl-ether
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Table 4. Publications detailing structural analysis of polysaccharides from New Zealand macroalgae

Family Species name used in reference Current name (if different) Polysaccharide type Reference

Reds
Bangiaceae Porphyra cinnamomea Galactan Hemmingson & Nelson (2002)
Bangiaceae Porphyra coleana Galactan Hemmingson & Nelson (2002)
Bangiaceae Porphyra rakiura Galactan Hemmingson & Nelson (2002)
Bangiaceae Porphyra virididentata Galactan Hemmingson & Nelson (2002)
Bangiaceae Porphyra columbina Species identity uncertain Galactan Brasch et al. (1981a), (1981b),

(1984b)
Caulacanthaceae Trematocarpus acicularis Complex galactan Miller (2002b)
Ceramiaceae Ceramium rubrum Xylo-galactan Miller & Blunt (2002)
Ceramiaceae Euptilota formosissima Miller & Furneaux (1997)
Champiaceae Champia novae zealandiae Complex galactan Miller et al. (1996)
Delesseriaceae Myriogramme denticulata Complex galactan Miller (2001b)
Erythrotrichiaceae Porphyra cameronii Pyrophyllon cameronii Xylo-galactan Hemmingson & Nelson (2002)
Erythrotrichiaceae Porphyra kaspar Chlidophyllon kaspar Xylo-galactan Hemmingson & Nelson (2002)
Erythrotrichiaceae Porphyra subtumens Pyrophyllon subtumens Xylo-galactan Hemmingson & Nelson (2002)
Faucheaceae Cenacrum subsutum Carrageenan? Adams et al. (1988)
Gelidiaceae Gelidum allanii Agar Nelson et al. (1994)
Gelidiaceae Gelidium caulacantheum Agar Miller & Furneaux (1982); 

Nelson et al. (1994)
Gelidiaceae Gelidium pusillum Capreolia implexa Agar Miller & Furneaux (1982)
Gelidiaceae Pterocladia pinnata, P. capillacea Pterocladiella capillacea Agar Miller & Furneaux (1982); 

2Nelson et al. (1994)
Gelidiaceae Pterocladia lucida Agar Miller & Furneaux (1982);

Stevenson & Furneaux (1991)
Gigartinaceae Gigartina decipiens Carrageenan Falshaw & Furneaux (1994)
Gigartinaceae Gigartina clavifera Carrageenan Falshaw & Furneaux (1995b)
Gigartinaceae Gigartina alveata Carrageenan Falshaw & Furneaux (1995b)
Gigartinaceae Gigartina lanceata Sarcothalia lanceata Carrageenan Falshaw & Furneaux (1998)
Gigartinaceae Gigartina chapmanii Chondracanthus chapmanii Carrageenan Falshaw & Furneaux (1998)
Gigartinaceae Gigartina atropurpurea Carrageenan Lawson et al. (1973); 

Penman & Rees (1973)
Falshaw et al. (2003)

Gigartinaceae Iridea lanceolata Carrageenan Adams et al. (1988)
Gigartinaceae Iridea sp. Carrageenan Adams et al. (1988)
Gracilariaceae Gracilaria sordida Gracilaria chilensis Agar Stevenson & Furneaux (1991)
Gracilariaceae Gracilaria truncata Agar Furneaux et al. (1990)
Gracilariaceae Gracilaria secundata f. 

pseudoflagellifera
Gracilaria chilensis Agar Miller & Furneaux (1987a)

Gracilariaceae Gracilaria secundata f. secundata G. secundata Agar Miller & Furneaux (1987b)
Gracilariaceae Gracilaria secundata f. compacta G. chilensis Agar Miller & Furneaux (1987b)
Gracilariaceae Gracilaria secundata f. 

pseudoflagellifera
G. chilensis Agar Miller & Furneaux (1987b)

Gracilariaceae Gracilaria secundata Uncertain Agar Brasch et al. (1981a), (1983),
(1984a)

Gracilariaceae Melanthalia abscissa Complex xylo-galactanFurneaux et al. (1990)
Gracilariaceae Curdiea coriacea Agar Furneaux et al. (1990); 

Falshaw et al. (1998)
Gracilariaceae Curdiea flabellata Agar Furneaux et al. (1990); 

Falshaw et al. (1998)
Gracilariaceae Curdiea codioides Agar Falshaw et al. (1998)
Gracilariaceae Curdiea sp. nov. (3 Kings) Curdiea balthazar Agar Falshaw et al. (1998)
Gracilariaceae Curdiea balthazar Agar Nelson et al. (1999)
Halymeniaceae ‘Kallymenia berggrenii’† Cryptonemia sp. Complex galactan Miller & Furneaux (1996)
Halymeniaceae Pachymenia lusoria Complex galactan Miller et al. (1995); 

Miller et al. (1997)
Halymeniaceae Pachymenia laciniata Complex galactan Miller et al. (1997)
Halymeniaceae Pachymenia crassa Complex galactan Miller et al. (1997)
Hildenbrandiaceae Apophlaea lyallii Complex galacto-

glucunono-xylo-glycan
Watt et al. (2002)

Nemastomaceae Nemastoma laciniata Carrageenan Adams et al. (1988)
Palmariaceae Leptosarca simplex Palmaria decipiens Xylan Adams et al. (1988)
Phyllophoraceae Ahnfeltia torulosa Gymnogongrus torulosus Carrageenan Furneaux & Miller (1985)
Phyllophoraceae Ahnfeltia sp. ? Carrageenan Furneaux & Miller (1985)
Phyllophoraceae Stenogramme interrupta Stenogramme sp. nov. Starch, carrageenan Furneaux & Miller (1985);

Miller (1998)
Phyllophoraceae Gymnogongrus nodiferus Gymnogongrus furcatus Carrageenan Furneaux & Miller (1985)
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substitution in agars from certain Curdiea species
(Furneaux et al. 1990; Falshaw et al. 1998). Despite
the extensive research already undertaken in this area,
there remain many species of New Zealand macroalgae
that have yet to be examined for polysaccharide
content and structure. As science in New Zealand
becomes more commercially driven, the challenge for
researchers will be to produce commercial quantities of
useful algae.

RECOMMENDATIONS FOR FUTURE 
RESEARCH

The taxonomic status of many New Zealand seaweeds
requires serious attention. Such knowledge is essential
to assess macroalgal biodiversity, as well as the impacts
of introduced species, pollution or aquaculture on macro-
algal communities. The process of cataloguing New
Zealand’s marine flora requires that researchers are

Table 4. Continued

Family Species name used in reference Current name (if different) Polysaccharide type Reference

Phyllophoraceae Gymnogongrus humilis Carrageenan Furneaux & Miller (1985)
Phyllophoraceae Gymnogongrus ‘vermicularis’ Gymnogongrus furcatus Carrageenan Furneaux & Miller (1985)
Phyllophoraceae Gymnogongrus sp. Carrageenan Furneaux & Miller (1985)
Plocamiaceae Plocamium costatum Plocamium cirrhosum Complex galactan Falshaw et al. (1999)
Rhodomelaceae Lenormandia chauvinii Adamsiella chauvinii Agaroid Miller et al. (1993b)
Rhodomelaceae Lenormandia angustifolia Adamsiella angustifolia Agaroid Miller et al. (1993b)
Rhodomelaceae Bryocladia ericoides Agaroid Miller et al. (1993b)
Rhodomelaceae Vidalia colensoi Osmundaria colensoi Agaroid Miller et al. (1993b)
Rhodomelaceae Laurencia thyrsifera Complex xylo-

galactan
Miller et al. (1993b)

Rhodomelaceae Dasyclonium incisum Agaroid Miller et al. (1993a)
Rhodomelaceae Chondria macrocarpa Complex xylo-

galactan
Furneaux & Stevenson (1990);
Miller & Blunt (2002)

Rhodomelaceae Streblocladia glomerulata Agaroid Miller & Furneaux (1997)
Rhodomelaceae Polysiphonia strictissima Agaroid Miller & Furneaux (1997)
Rhodomelaceae Polysiphonia abscissoides Miller & Furneaux (1997)
Rhodomelaceae Cladhymenia oblongifolia Complex galactan Miller & Blunt (2000)
Rhodomelaceae Lophurella caespitosa Agaroid Miller (2002a)
Rhodomelaceae Lophurella hookeriana Agaroid Miller (2002a)
Rhodymeniaceae Hymenocladia sanguinea Hymenocladia chondricola Complex galactan Miller (2001a)
Browns
Alariaceae Ecklonia radiata Alginate Miller (1996)
Chordariaceae Papenfussiella lutea Alginate Miller (1996)
Chordariaceae Myriogloia intestinalis Alginate Miller (1996); Miller & Blunt 

(2003)
Cystoseiraceae Cystophora torulosa Alginate Miller (1996)
Cystoseiraceae Cystophora retroflexa Alginate Panikkar & Brasch (1996);

Panikkar & Brasch (1997)
Durvilleaceae Durvillaea antarctica Alginate Miller (1996); Panikkar & 

Brasch (1996);
Panikkar & Brasch (1997);
Kelly & Brown (2000)

Durvilleaceae Durvillaea willana Alginate Panikkar & Brasch (1996);
Panikkar & Brasch (1997);
Kelly & Brown (2000)

Fucaceae Xiphophora chondrophylla Alginate Miller (1996)
Hormosiraceae Hormosira banksii Alginate Miller (1996); Panikkar & 

Brasch (1996);
Panikkar & Brasch (1997)

Lessoniaceae Lessonia variegata Alginate Miller (1996)
Lessoniaceae Macrocystis pyrifera Alginate McKee et al. (1992); Panikkar 

& Brasch (1996);
Panikkar & Brasch (1997)

Sargassaceae Carpophyllum maschalocarpum Alginate Miller (1996)
Scytosiphonaceae Scytosiphon lomentaria Alginate Miller (1996)
Seirococcaceae Marginariella boryana Alginate Panikkar & Brasch (1996);

Panikkar & Brasch (1997)
Splachnidaceae Splachnidium rugosum Alginate Miller (1996); Miller & Blunt 

(2003)
Greens
Cladophoraceae Chaetomorpha coliformis Cellulose Newman (1999)

†This name was incorrectly applied to the specimen analyzed.
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trained in both traditional and modern (e.g. molecular
phylogenetics) taxonomic techniques. In order for
researchers and managers of coastal marine eco-
systems to make informed decisions, long-term moni-
toring (minimum of 5–10 years) of temporal changes in
macroalgal-dominated communities is required. A national
monitoring programme using standard monitoring
methodologies could easily be established for a range
of coastal ecosystems around New Zealand where
research institutions and/or field laboratories are con-
veniently based: Leigh, Cook Strait, Canterbury, Otago,
Stewart Island and Fiordland. A similar programme to
assess the production rates of dominant intertidal and
subtidal macroalgal species and/or communities could
be established, along with studies on the fate of
macroalgal production in the coastal food web. The
expansion of the New Zealand seaweed industry will be
dependent on access to suitable resources. The long-
term effects of seaweed removal on marine communi-
ties will need to be investigated if wild harvest is to be
a sustainable option. Information on reproduction and
growth requirements of specific species will be required
if aquaculture or wild harvest are to be viable options.
To make best use of funding for macroalgal research,
and to prevent duplication of research, we recommend
enhanced collaborations between research institutions.
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