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Abstract Prasiolales are characterized by high

morphological plasticity. This problem in taxo-

nomic delimitation of the species may be a result

of environment heterogeneity. Habitat character-

istics and morphological variation of P. mexicana

and P. nevadensis, two species of freshwater leaf-

like thallus green algae, were investigated in five

sites in central México where the morphological

traits of these species overlap. Comparisons were

made between habitat characteristics among

streams and transects with and without Prasiola

samples. Although no consistent correlation was

found between environmental variables and mor-

phological traits, a significantly wider range of

habitat characteristics of current velocity and

irradiance and morphometric variation (lamina

length, lamina diameter, cell length, surface of the

thallus, thickness and number of layers) suggested

that P. mexicana was more plastic than P.

nevadensis in its physicochemical requirements.

Our results suggest that small variation of micro-

habitat conditions in P. nevadensis (irradiance

and current velocity) could explain its very

restricted geographic range in streams in central

Mexico.
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Introduction

Prasiolales green algae have been cited as abun-

dant and frequent components of stream macroal-

gal communities, and form massive green thalli in

temperate, tropical, and boreal climates through-

out the world (Starmach 1972; Sheath and Cole

1992; Hamilton and Edlund 1994; Naw and Hara

2002; McClintic et al. 2003; Ramı́rez and Carmona

2005). The genus Prasiola is characterized by a

monostromatic laminar thallus and vegetative cells

with stellate or lobed chloroplasts containing a

single pyrenoid. In Mexico it has been reported in

most taxonomic studies involving stream macroal-

gal communities (Agardh 1847; Knebel 1936;

Ortega 1984; Ramı́rez et al. 2001; Ramı́rez and

Cantoral 2003; Ramı́rez and Carmona 2005).

The systematic position of Prasiola has been

controversial, because of morphological similari-

ties with marine genera such as Ulva, Monostro-

ma, Enteromorpha, and Rosenvingiella (Smith

1950; Bravo 1965) and overlapping morphometric
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variation and plasticity within Prasiola (Hamilton

and Edlund 1994; Naw and Hara 2002; Rindi et al.

1999; Rindi and Guiry 2004). Ramı́rez and Car-

mona (2005) analyzed taxonomic characteristics

of the two stream species of Prasiola in central

Mexico. They argued that morphometric varia-

tions (plant length and cell length and diameter)

and morphological characteristics (surface texture

of the thallus) could be explained by environ-

mental factors. Information about algal ecology

and ecophysiology in Prasiolales can be found

elsewhere (Friedmann 1959, 1960). Cole and

Akintobi (1963) noted that gametes of P. stipitata

Suhr and P. meridionalis Setchell & Gardner

were released from the thallus when it was kept at

low temperature and in short periods of light. In

the same way, Anderson and Foster (1999)

reported that high insolation affects the distribu-

tion and abundance of P. meridionalis. In terres-

trial species such as P. calophylla (Carmichel)

Meneghini and P. crispa (Lighfth) Meneghini it

developed above firm substrata and its asexual

reproduction was related to the warmest season

of the year (Rindi et al. 1999).

Studies of Prasiola have been oriented toward

supraspecific characteristics (Rindi et al. 1999;

Sherwood et al. 2000; Naw and Hara 2002;

Ramı́rez and Carmona 2005), demonstrating that

ecological information is still lacking. The pur-

pose of this study was to evaluate the effect of

physical factors (current velocity, depth, irradi-

ance, and substratum type) on small-scale (micro-

habitat) spatial distribution, morphometric

adaptations, and percentage cover of P. mexicana

and P. nevadensis populations in five streams in

the central region of Mexico.

Material and methods

Fieldwork was performed at the end of the rainy

season and winter (November–February), these

being the most favorable growth periods for four

populations of Prasiola mexicana and one of P.

nevadensis in the region (Ramı́rez and Carmona

2005), in five sites located in the central region of

Mexico (Table 1). Each sampling location con-

sisted of randomly chosen stream segments, 10 m

long. Observations were made of natural substra-

tum (gravel, sand, pebbles, and boulders). Micro-

habitat analysis was conducted using the quadrant

technique (Krebs 1989; Necchi et al. 1995), which

evaluates the effect of microhabitat variables

(current velocity, depth, subaquatic irradiance,

and type of substratum) on scales of a few

centimeters over the vegetative and reproductive

characteristics of the lamina. Each sampling

quadrant was a circle of 10 cm radius (area

314 cm2). Type and size of sampling quadrants

were defined from preliminary tests and previous

research (Necchi et al. 1995; Ramı́rez and Car-

mona 2005). Sample size consisted of 10 quad-

rants, each separated by 1 m; their locations were

determined by random numbers between 0 and

180�. In one of these positions we situated a

sampling site with the algae (presence quadrants)

and also looked for a point without the algae

(absence quadrants) to evaluate differences be-

tween microhabitat characteristics. We sampled

20 sampling quadrants per segment (ten presence

quadrants and ten absence quadrants).

Temperature, pH and specific conductance

were measured for each river segment with a

Conductronic PC-18 conductivity meter. Micro-

habitat variables were measured in situ at the

center of each sampling quadrant. Current veloc-

ity and irradiance were measured as close as

possible to the algal growth using a Swoffer 2100

current velocity meter and a Li-Cor LI-1000

quantum meter with a flat subaquatic sensor of

photosynthetic active radiation (PAR), respec-

tively. Algal cover (%) was recorded by the same

person within each sampling quadrant by visual

estimation with a 175 cm2 viewfinder. Five lam-

inas were collected per sampling quadrant and

preserved in 3% formaldehyde for subsequent

evaluation in the laboratory. Specimens collected

within quadrants were measured to determine the

morphometric characteristics previously believed

to be of taxonomic importance—diameter, length

and thickness of lamina, diameter and length of

vegetative cells, number of layers, and surface of

the lamina (Ramı́rez and Carmona 2005). Mea-

surements of diameter and length of lamina were

made in replicate for five plants and cells; number

of layers and surface dimensions were made in

replicates of 20. Means were calculated for each

morphometric characteristic.
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We used a Mann–Whitney test to assess

environmentally significant differences between

presence and absence quadrants at each site and a

Kruskal–Wallis test to assess morphometric and

environmental differences among five popula-

tions of Prasiola. When these tests were signifi-

cant, the Mann–Whitney test was conducted

among all pairs of sites to detect which differed

significantly. The substratum preference was

evaluated by use of a log–linear regression model.

Associations among percentage cover and mor-

phometric data with microhabitat variables were

tested using the Spearman correlation coefficient

(Gotelli and Ellison 2004). Tests were performed

with the software SPSS 12 and GLIM 4.

Results

Prasiola populations occurred under very diverse

environmental conditions (Table 1, Fig. 1, 2).

Similarities between the two species were boulder

substratum and shallow depth; differences were

conductivity, irradiance, and, possibly, current

velocity and temperature. Environmental condi-

tions had particular patterns for each species

studied. The Mann–Whitney test applied between

presence and absence quadrants revealed signif-

icant differences for depth (U = 1.00–17.50,

P < 0.05) and substratum (v2 = 65.52, P < 0.001)

in the five sites and current velocity in sites 2 and

5 (U = 16.00–19.50, P < 0.05). The Kruskall–Wal-

lis test revealed significant differences in all the

morphometric characteristics and percentage

cover among the five populations (Fig. 2): per-

centage cover (H = 17.34, P < 0.05), lamina

length (H = 54.4; P < 0.001), cell length

(H = 59.5; P < 0.001), cell diameter (H = 53.7;

P < 0.001), thallus undulations (H = 26.55;

P < 0.001), thickness (H = 105.4; P < 0.001), and

cell layers (H = 76.9; P < 0.001).

Some significant correlations were found be-

tween environmental conditions and morphomet-

ric data (Table 2). These were found to be

significant at one site only, however, or when

the correlation was significant at two sites it had

opposite signs. Thus, there was no consistent

relationship among form and environment. Posi-

tive correlations were obtained for the morpho-

metric variables lamina length and lamina

diameter in four sites (q = 0.69–0.94; P < 0.05),

lamina length and cell length in sites 2 and 4

(q = 0.65–0.83; P < 0.05), cell length and cell

diameter in sites 1, 2, 4, and 5 (q = 0.68–0.93;

P < 0.05), thickness and number of layers in sites

1, 2, and 5 (q = 0.79–0.89; P < 0.01), and lamina

length and thickness (q = 0.63; P < 0.05) and

number of layers (q = 0.71; P < 0.05) in site 5.

The negative correlation was for lamina length

and thallus undulations (q = –0.68; P < 0.05) in

site 5.

Discussion

It has been reported that environmental hetero-

geneity is responsible for morphological variation

in other Chlorophyta populations (Branco and

Necchi 1998; Vieira and Necchi 2002). Our data

show, however, that despite their large morpho-

logical variation these two Prasiola species have

no plastic response to the conditions they expe-

rience. The same lack at pattern has been

reported for Characea populations (Vieira and

Necchi 2002). More studies are needed to estab-

lish whether it is common in other algae. Prasiola

mexicana occurred under a wide range of micro-

habitat conditions, suggesting they tolerate sub-

stantial variations of current velocity and

irradiance. In this study the current velocity was

in the range 0.05–2 m s–1 reported by Hamilton

and Edlund (1994) and McClintic et al. (2003) for

P. fluviatilis, and similar to those for Prasiola sp.

in low or zero current velocity (Naw and Hara,

2002). Rindi and Guiry (2004) proposed that

emersed Prasiolales populations have evolved

different mechanisms to exist in subaereal condi-

tions. One such mechanism is a physiological

adaptation for fixing bicarbonates in the photo-

synthetic process and Mycosporine-like amino

acid (MAAs) production for ultraviolet filtration

(Raven and Johnson 1991; Lud et al. 2001;

Rozema et al. 2002; Gröniger and Häder 2002;

Karsten et al. 2005). Another adaptation is the

protection given by several lamina layers for

humidity retention and assimilation of nutrients

in P. crispa (Lud et al. 2001).
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Prasiola mexicana populations in central Mex-

ico have a preference for boulder substrata that is

shared by several freshwater species in the genus;

for example, P. japonica Yatabe, P. formosana

Okada, P. sinica Jao (Starmach 1972), P. fluvia-

tilis (Sommerf.) Aresch (Hamilton and Edlund

1994; McClintic et al. 2003), and Prasiola sp.

(Naw and Hara 2002). This characteristic is

apparently related to the stable substrata and

the time for rhizoidal holdfast development.

Greater tolerance of microhabitat conditions

and high percentage cover can explain the rela-

tively large number of temperate streams in

central Mexico with P. mexicana, including

  

  

                                                                                

Fig. 1 Irradiance, current
velocity, depth, and
dominant substratum
(G = gravel, S = sand,
P = pebbles and
B = boulders) (n = 10,
mean ±1 SE) for Prasiola
mexicana and P.
nevadensis populations in
presence and absence
quadrants in the fives sites
studied. Arrow heads
show differences between
presence and absence
quadrants for the same
population according to
the Mann–Whitney test
(a = 0.05). Sites are
numbered in accordance
with Table 1
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Fig. 2 Morphometric and percentage cover values
(mean ±1 SE) for populations of Prasiola mexicana and
P. nevadensis in the five sites studied. Sites with the same

letter do not differ significantly (Mann–Whitney test,
a = 0.05). For morphometric variables n = 200

Table 2 Significant values of Spearman’s q correlation coefficient among environmental variables and morphometric
characteristics for Prasiola populations

Variables Characters Site 1 Site 2 Site 3 Site 4 Site 5

Current velocity Thickness 0.76** – – – –
Percentage cover – – 0.71* – –
Lamina length – – – 0.66* –
Number of layers – 0.63* – – –

Irradiance Percentage cover – – –0.68* 0.65** –
Lamina length – – –0.65* – –
Undulations 0.67* – 0.67* – –
Cell diameter – – – – –0.63**

Depth Lamina length –0.65* – – – –
Lamina diameter –0.72* – – – –
Thickness – 0.63* –0.65* – –
Number of layers – 0.64* – – –
Undulations – – –0.65* 0.85** –

Sites are numbered in accordance with Table 1 * P < 0.05, ** P < 0.01; – = non-significant values
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pristine (Ramı́rez and Cantoral 2003) to little-

disturbed habitats (Ramirez et al. 2001). Thus,

these results suggest that P. mexicana is a highly

tolerant species similar to other Chlorophyceae

populations, for example Stigeoclonium helveti-

cum Vischer with tolerance of high irradiance

(1010–1235 lmol photons m–2 s–1), low depth

(20.2–21.7 cm), and variable current velocity

(0.47–0.97 m s–1) (Branco and Necchi 1998).

Our results suggest that P. nevadensis grows in

a narrow range of current velocity and irradiance

and in higher-conductivity waters than P. mexi-

cana. P. nevadensis also grows on boulder sub-

strata. The significant negative correlation of

irradiance with cell diameter and the narrow

range of irradiance in this study indicate limited

tolerance of high irradiation; this is dissimilar to

the populations of Prasiola mexicana in this study.

Similar trends of low irradiance have been

observed for several stream populations of fila-

mentous and parenchymatous Chlorophyta and

Prasiolales species, for example Rhizoclonium

hieroglyphicum (C. Ag) Kütz (105 lmol photons

m–2 s–1), Chara sp. (300 lmol photons m–2 s–1,

Necchi 2004), and P. fluviatilis (riparian cover

75%, McClintic et al. 2003). This suggests that P.

nevadensis is a shade-tolerant species. This infor-

mation about the ecological distribution and

environmental requirements of P. nevadensis is

consistent with its taxonomic designation (Ram-

ı́rez and Carmona 2005), but the survey is not

sufficient to complete our taxonomic knowledge.

The significant cell length and diameter differ-

ences between P. nevadensis and the four popu-

lations of P. mexicana confirm the importance of

these morphometric characteristics in distinguish-

ing between these species, as proposed by

Ramı́rez and Carmona (2005). The significant

correlations found between morphometric and

microhabitat variables also suggest that P. nevad-

ensis has limited plasticity to cope with the typical

spatial heterogeneity of lotic habitats (Whitton

1975). Narrow microhabitat range can explain the

relatively low frequency of this species in the

streams of Central Mexico (Montejano et al.

2004; Ramı́rez and Carmona 2005).
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Sociedad Botánica de México 68:51–73
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