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A Plastid of Probable Green Algal Origin in
Apicomplexan Parasites
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Protozoan parasites of the phylum Apicomplexa contain three genetic elements: the
nuclear and mitochondrial genomes characteristic of virtually all eukaryotic cells and a
35-kilobase circular extrachromosomal DNA. In situ hybridization techniques were used
to localize the 35-kilobase DNA of Toxoplasma gondii to a discrete organelle surrounded
by four membranes. Phylogenetic analysis of the tufA gene encoded by the 35-kilobase
genomes of coccidians T. gondii and Eimeria tenella and the malaria parasite Plasmo-
dium falciparum grouped this organellar genomewith cyanobacteria and plastids, show-
ing consistent clustering with green algal plastids. Taken together, these observations
indicate that the Apicomplexa acquired a plastid by secondary endosymbiosis, probably
from a green alga.

Apicomplexan parasites contain two ma-
ternally inherited extrachromosomal DNA
elements (1). The mitochondrial genome is
a multicopy element of ;6 to 7 kb encod-

ing three proteins of the respiratory chain
and extensively fragmented ribosomal
RNAs (2). In addition, these parasites con-
tain a 35-kb circular DNA molecule with
no significant similarity to known mito-
chondrial genomes. The 35-kb element is
similar to chloroplast genomes, containing
an inverted repeat of ribosomal RNA genes
and genes typically found in chloroplasts
but not mitochondria (rpoB/C, tufA, and
clpC) (3). The 35-kb DNA is also predicted
to encode a complete set of tRNAs, numer-
ous ribosomal proteins, and several uniden-
tified open reading frames (3).

We used in situ hybridization to deter-
mine whether the 35-kb DNA is found
within the parasite nucleus, mitochondrion,
or cytoplasm or, alternatively, whether this
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molecule localizes to a previously unidentified
DNA-containing organelle. We chose T. gon-
dii for this project (rather than Plasmodium, in
which the 35-kb element has been better
characterized) for two reasons. First, there are
approximately eight copies of the 35-kb circle
per haploid genome in T. gondii tachyzoites, as
opposed to approximately one copy in Plas-
modium. Second, Toxoplasma offers much bet-
ter ultrastructural resolution, because of its
regular organization of intracellular organelles
and well-defined apical region. To localize the
35-kb DNA, we hybridized extracellular
tachyzoites with digoxigenin-labeled DNA
probes that covered 10.5 kb of the 35-kb
genomic sequence but excluded the ribosom-
al genes, to avoid cross-hybridization with the
mitochondrial genome (4). We also targeted
RNA transcripts derived from the 35-kb ge-
nome, using digoxigenin-labeled antisense
RNA generated from putative rps4 sequences
(5). The DNA:DNA or RNA:RNA hybrids
were visualized by fluorescence in situ hybrid-
ization (FISH), and nuclear DNA was coun-
terstained with the fluorescent dye YOYO-1.

Examination by laser-scanning confocal
microscopy revealed that the 35-kb DNA
of T. gondii is localized to a specific region
in the cell, adjacent to (but distinct from)
the apical end of the parasite nucleus (Fig.
1A). Transcripts of rps4 were also concen-
trated in this region (Fig. 1B), suggesting
that diffusion of 35-kb DNA-related tran-
scripts is restricted by a physical (possibly
membranous) barrier.

Extranuclear DNA was not detected by
YOYO-1 (or propidium iodide), presumably
because of the low DNA concentrations
typically found in non-nuclear organelles
and the membrane-impermeable nature of
these dyes. However, the extranuclear sig-
nal obtained by FISH resembled the pat-
tern observed after staining with sensitive
membrane-permeable DNA dyes such as
Hoechst 33258 or 49,69-diamidino-2-phe-
nylindole (DAPI) (Fig. 1, D and E). To
compare the subcellular distribution of ex-
tranuclear DNA with the 35-kb DNA-de-
rived FISH signal (Fig. 1, F though H), we
used a monoclonal antibody to DNA be-

cause neither Hoechst nor DAPI stains are
excited by the Kr-Ar laser that was avail-
able for confocal imaging and because in
situ signals were difficult to detect on a
conventional fluorescence microscope.

To examine the subcellular location of
the 35-kb DNA more precisely, we hybrid-
ized frozen ultrathin sections with digoxige-
nin-labeled DNA probes (Fig. 2, A and B).
Staining with antidigoxigenin followed by a
secondary antibody and gold-conjugated
protein A localized the 35-kb element to a
membranous region adjacent to the nucleus
but distinct from either the mitochondrion
or the Golgi apparatus (large gold particles).
Antibody to DNA also stained this area
(small gold particles). In control experi-
ments, probes prepared from plasmid vector
DNA showed no hybridization, although
the antibody to DNA still detected the
membranous region just apical to the nu-
cleus. The morphology of the membranous
structure labeled by 35-kb DNA probes is
difficult to resolve under the harsh condi-
tions used for in situ hybridization, but con-
ditions suitable for labeling with antibody
against DNA alone revealed an organelle
associated with multiple membranes (Fig.
2C). Thin sections through Epon-embed-
ded parasites (which provide superior mem-
brane preservation but do not permit anti-
body or in situ labeling) show that this
organelle is invariably enclosed by four bi-
layer membranes (Fig. 2, D and E).

Previous phylogenetic studies on the 35-
kb genome suggested a plastid ancestry, but
confidence in this assessment has been low
because of the limited number of taxa and
phylogenetic methods used (6). Genes
identified on the 35-kb element include
tufA, encoding the protein synthesis elon-
gation factor Tu, a gene previously found
useful for constructing molecular phylog-
enies (7). Phylogenetic analysis of tufA se-
quences from T. gondii, P. falciparum, and
E. tenella (8) places the apicomplexan 35-
kb element solidly within the plastids (Fig.
3). This placement is robust when either
amino acid alignments or nucleotide align-
ments first and second codon positions are
analyzed under a variety of phylogenetic
methods, including maximum likelihood,
parsimony, and distance methods (using ei-
ther Kimura three-parameter or LogDet
transformation) (9). The association of api-
complexan tufA genes with those of plastids
does not appear to be caused by either the
AT-rich or the divergent nature of the se-
quences (10). The similarity of apicom-
plexan and plastid tufA genes is also sup-
ported by the presence of two insertions
characteristic of plastids and cyanobacteria,
although the length of these insertions is
variable among the Apicomplexa.

All three phylogenetic methods used sup-

A

B
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F G H

E

C

Fig. 1. The 35-kb episomal genome and 35-kb
derived RNA transcripts localize to a specific re-
gion adjacent to the nucleus in T. gondii
tachyzoites. (A) Pseudocolor image of T. gondii
tachyzoites hybridized with digoxigenin-labeled
35-kb genome-specific DNA (26). The DNA:DNA
hybrids were visualized with rhodamine-conju-
gated anti-digoxigenin (red), and nuclear DNA
was counterstained with YOYO-1 (green). Sig-
nals derived from the two fluorophores were col-
lected independently by laser scanning confocal
microscopy andmerged with phase-contrast im-
ages simultaneously collected from the transmit-
ted-light flow-through from the confocal micro-
scope. (B and C) Localization of 35-kb DNA-
encoded rps4 transcripts (27 ). Tachyzoites were
hybridized with digoxigenin-labeled (B) antisense
or (C) sense RNA generated in vitro from a cloned
DNA fragment spanning the putative rps4 gene
and visualized with rhodamine as above (red);
nuclei were counterstained with YOYO-1 (green).
(D and E) Extrachromosomal DNA in T. gondii
tachyzoites. Fixed parasites were stained for 20
min at 25°C with ;2 mg/ml of Hoechst 33258 in
13 SSC and examined by conventional epifluo-
rescence microscopy with a Zeiss Axiovert 35
equipped with an ultraviolet filter set. A distinct
extranuclear signal is seen in extracellular
tachyzoites (D). Intracellular tachyzoites (E) orient
in “rosettes,” with their apical ends pointed out-
ward (28), permitting localization of the extranu-
clear DNA to the apical juxtanuclear region. (F
through H) Co-localization of extranuclear DNA
and 35-kb genome-specific sequences. Nuclei
were labeledwith YOYO-1 and extranuclear DNA
with an antibody directed against DNA, followed
by a fluorescein-conjugated secondary antibody (green). (Nuclear DNAwas not labeled by the antibody to
DNA except under extraction conditions, that destroyed parasite morphology, presumably because
binding is blocked by chromatin-associated proteins.) The extranuclear DNA co-localizes with in situ
hybridization probes derived from the 35-kb element (red). (F and G) Green and green 1 red images of the
same field (containing two parasites); (H) green and red fluorescence signals from a different parasite,
merged with the corresponding phase-contrast image. Scale bars, 5 mm.
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port monophyly of all plastids, including the
apicomplexan 35-kb element. Resampling
methods that test the internal consistency of
phylogenetic patterns within the data gave
bootstrap values (11) of 75, 39, and 88% for
monophyly of plastids (for maximum likeli-
hood, LogDet–neighbor-joining, and parsimo-
ny analyses, respectively) and 81, 69, and 94%
for monophyly of plastids and cyanobacteria
(Fig. 3). Parsimony analysis of nucleotide data
scored only for transversion events also pro-
vides strong support for the clade composed of
cyanobacteria and plastids (94%), and mod-
erate support (78%) for plastid monophyly.
The apicomplexan plastids were consistently
placed among the green algae by all analytical
methods used. Although support for green
algal affinity was weak (bootstrap values of 41,
21, and 63%), these values are comparable to
the level of support for green plastid mono-
phyly when apicomplexans are excluded, yet
the green plastids are known to be monophy-
letic on many other grounds (7). Trees con-
strained to place the Apicomplexa with non-
green plastids were consistently worse than
those placing them with the green plastids,
although the difference in likelihood was not
significant by the Kishino-Hasegawa test (9).

Many investigators have assumed that
the apicomplexan 35-kb genome is related to
dinoflagellate plastids, on the basis of struc-
tural similarities between the Apicomplexa
and dinoflagellates, and phylogenetic analy-
ses of nuclear genes (12). Unfortunately, few
dinoflagellate plastid genes have been exam-
ined, but there is considerable diversity of
plastid form among dinoflagellates, and their
plastids may have arisen from multiple dis-
tinct endosymbioses (13). Thus, it seems
likely that the last common ancestor of all
dinoflagellates was not photosynthetic and
that the Apicomplexa and dinoflagellates
acquired their plastids independently.

A structure consisting of multiple mem-
branes has previously been described as the
“Golgi adjunct” in Toxoplasma, and similar
structures—variously termed the lamellärer
körper, vacuoles plurimembranaires, spherical
body, or Hohlzylinder—have been observed
in other apicomplexan parasites (14). The
cytological derivation of this structure has
been unclear, but the demonstration that this
organelle is associated with a plastid genome
in Toxoplasma—combined with the mono-
phyly of Toxoplasma, Plasmodium, and Eimeria
tufAs in all analyses—argues for a single en-
dosymbiotic organelle common to all apicom-
plexans. The apicomplexan plastid (abbrevi-
ated ‘‘apicoplast’’) is an authentic plastid in all
respects, albeit one that is probably incapable
of photosynthesis.

Previous investigators have debated the
number of membranes surrounding the apico-
plast, suggesting that the appearance of mul-
tiple membranes may result from proximity to

Fig. 2. Ultrastructural localization of
35-kb genome-specific DNA to a
unique organelle enclosed by four
membranes in T. gondii tachyzoites.
(A) Longitudinal ultrathin cryosection
of T. gondii tachyzoites hybridized
with digoxigenin-labeled probes de-
rived from the 35-kb DNA (29).
Digoxigenin was visualized with an-
tibodies and protein A coupled to
10-nm gold particles. Samples were
further incubated with monoclonal
antibody directed against DNA
(which does not stain intact chroma-
tin in the parasite nucleus; see Fig. 1
legend), followed by a secondary
antibody with protein A coupled to
5-nm gold (30). (B) Higher magnifi-
cation of the region in (A) show-
ing gold labeling. The 35-kb DNA
probes hybridize specifically with a
membranous region (p) just apical to
the nucleus (Nu) but are distinct from
the mitochondrion (m) and Golgi ap-
paratus (g). (C) Immunogold labeling
of extranuclear DNA (10-nm gold
particles) in a T. gondii tachyzoite
not subjected to in situ hybridiza-
tion conditions. Membranes appear
white in this negatively stained im-
age. (D and E) Ultrathin sections
through the apicoplast (p) of an
Epon-embedded parasite (31). The
organelle is surrounded by four membranes (stained black by uranyl acetate). The parasite in (E) is
beginning to divide, as indicated by division of the Golgi and development of the two daughter “buds.” The
apicoplast is flattened adjacent to the apical end of the nucleus and is divided between the two daughters
early during endodyogeny.

Fig. 3. Molecular phylogenetic analyses of tufA genes from three apicomplexan 35-kb genomes and
representative eubacteria, plastids, and mitochondria (32). Maximum likelihood finds the phylogeny that
is statistically most likely to have given rise to the observed sequences. Neighbor joining is a cluster
method, in this case using “LogDet” distances (2ln determinant). Parsimony finds the tree that requires
the fewest inferred mutations to represent the data (9). Branch lengths are proportional to the number
of inferred substitutions (or LogDet value); bootstrap values $40% are given above the corresponding
branch (11). The column at the far right indicates the number of membranes surrounding the plastid for
taxa in the parsimony tree. All three phylogenetic methods consistently group the apicomplexan 35-kb
encoded tufA genes with green algal plastids.
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the endoplasmic reticulum or Golgi apparatus
(14, 15). Although this organelle is closely
associated with the Golgi, the fixation and
staining conditions used for Fig. 2, D and E,
commonly show four membranes. It is diffi-
cult to visualize distinct membranes all the
way around the organelle (and serial sections
necessarily lose definition at the top and bot-
tom of the stack), but all of our micrographs
are consistent with the four-membrane hy-
pothesis, and many sections are clearly incom-
patible with #3 or $5 membranes. The pres-
ence of four membranes enclosing the apico-
plast suggests that it originated as a secondary
endosymbiont (derived by ingestion of a eu-
karyote that itself harbored a plastid), analo-
gous to the plastids of chlorarachniophytes
and cryptomonads (16). This hypothesis is
bolstered by the phylogenetic grouping of api-
coplasts with green algal plastids, which pre-
sents a clear conflict with nuclear gene phy-
logenies (12, 17) and therefore provides pri-
ma facie support for a secondary endosymbi-
otic origin. The putative green algal origin of
apicomplexan plastids should be testable
through further phylogenetic analyses of plas-
tid sequences and analysis of apicomplexan
nuclear genes of potential green algal origin,
such as phosphoglucose isomerase and enolase
(18).

The function of the apicoplast remains
unknown, but the parasite faithfully replicates
this organelle, which divides by binary fission
and is introduced into developing daughter
parasites very early during replication (Fig.
2E). The apicoplast genome is certainly tran-
scribed: Several transcripts have been identi-
fied by Northern (RNA) blot analysis (3, 19),
rps4 transcripts localize to the same region as
the 35-kb DNA (Fig. 1), and ribosomal RNA
derived from the 35-kb circle has been local-
ized to this organelle (15). Like other endo-
symbiotic genomes (20), the 35-kb element is
presumed to be the remnant of a much larger
precursor, most of whose original functions
have been lost or transferred to the nuclear
genome. Photosynthesis is the most familiar
function of plastids, and evidence for a chlo-
rophyll binding protein in Apicomplexa has
been reported (21), although we have not
been able to confirm these results in Toxoplas-
ma. Plastids also play many other key meta-
bolic roles—including biosynthesis of amino
acids and fatty acids, assimilation of nitrate
and sulfate, and starch storage (22)—and
have been maintained in many nonphotosyn-
thetic taxa over millions of years (23). The
apicoplast has been suggested as a target for
macrolide antibiotics in Toxoplasma (24)
and may also be the target for rifampicin in
Plasmodium (25). Further studies are likely
to elucidate important aspects of plastid
function and evolutionary history, in addi-
tion to identifying other parasite-specific
targets for chemotherapy.
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Evidence for a Family of Archaeal ATPases

The analysis by Carol J. Bult et al. of the
Methanococcus jannaschii genome included
families of paralogous proteins that did not
seem to have counterparts in the current se-
quence databases (1). The largest of such
families consists of 13 chromosomal and three
plasmid-encoded proteins, which were found
to be highly similar to one another [figure 6 in
(1)], but did not show statistically significant
similarity to any proteins, thus escaping func-
tional prediction. Our inspection of the align-
ment, however, indicates that two of the con-
served sequence blocks correspond to well-
characterized functional motifs: namely, the
phosphate-binding P-loop and the Mg21-
binding site that are conserved in a vast vari-
ety of ATPases and GTPases (Fig. 1 and 2–4).
Even though most commonly used methods
for database search such as BLASTP (5)
showed only marginally significant similarity
to several ATPases, a new version of the
BLASTP program that constructs local align-
ments with gaps (6) indicated a probability of
matching by chance between 1024 and 1026

for some of the proteins in the new archaeal
family and bacterial DnaA proteins; the con-
servation was particularly notable in the two
ATPase motifs (Fig. 1). Thus, even though
these 16 proteins comprise a novel family that
is so far represented only in archaea, they
appear to belong to a known broad class of
proteins, and we predict that they possess
ATPase activity.

Screening of the nonredundant protein se-
quence database at the National Center for
Biotechnology Information (National Insti-
tutes of Health, Bethesda, MD), with a bi-
partite pattern representing the specific forms
of the two ATPase motifs conserved in the
M. jannaschii family—namely, hhhhGx4-
GK[TS]xnhhhhD[DE] (h indicates a bulky
hydrophobic residue), selected 271 pro-
teins, all of which are either known to
possess ATPase activity or are highly simi-
lar to ATPases. In addition to DnaA, this
list includes a number of members of the
so-called AAA ATPase family (7); the sim-
ilarity between these proteins and DnaA

has been noted before (4). Many of the AAA
family proteins possess chaperone-like activity
and, in particular, are involved in ATP-de-
pendent proteolysis; examples include bacte-
rial proteins ClpA, ClpB, ClpX, FtsH, and
HslU; proteasome components; and yeast
HSP78 (7). Members of the novel archaeal
protein family could also perform chaperone-
like functions. This is particularly plausible,
because M. jannaschii does not encode several
molecular chaperones that are ubiquitous and
highly conserved in bacteria and eukaryotes—
namely, members of the HSP70, HSP90, and
HSP40 families. It remains to be seen how
typical is this situation in archaea.

Finally, the family of putative ATPases
contains a third strikingly conserved motif
with two invariant histidines and one in-
variant cysteine (Fig. 1). Even though this
motif did not show statistically significant
similarity to any proteins in the database,
this may be a specific metal-binding site,
and some resemblance of the divalent cat-
ion-binding motif in bacterial Fur proteins
that are metal-dependent transcription reg-
ulators (8) could be detected (Fig. 1). Two
observations seem relevant: (i) One of the
chaperone ATPases, FtsH, contains a met-
al-binding motif conserved in its bacterial
and eukaryotic homologs and is a Zn-de-
pendent protease (9). (ii) Methanococcus
jannaschii encodes at least two other puta-
tive ATPases, namely, the predicted pro-
teins MJ0578 and MJ0579 that also contain
a metal-binding domain, in these cases a
ferredoxin-like domain (10).

Thus, analysis of conserved motifs and ap-
plication of additional methods for sequence
database search yields specific functional pre-
dictions for archaeal proteins that initially
appeared to comprise a unique family. There
is little doubt that further exploration of the
M. jannaschii genome sequence will bring
more interesting findings.
Eugene V. Koonin, National Center for Bio-
technology Information, National Library of
Medicine, National Institutes of Health, Beth-
esda, MD 20894, USA
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