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Abstract

Information in the existing literature on some aspects of
the collection and statistical analysis of Sedgwick-Rafter
cell data appears contradictory, confusing, or absent .
Using data from an experimental phytoplankton popula-
tion as a basis, an investigation of S-R cell procedure has
been undertaken with the following conclusions : ,) set-
tling time depends upon the type of preservation and the
composition of the sample ; 2) the field counting tech-
nique gives more accurate data and is less time consuming
than the strip counting technique ; 3) making fewer counts
on each of a greater number of S-R cells gives more accu-
rate results than making a greater number of counts on
one or several S-R cells ; 4) nonparametric methods offer a
more convenient and nearly as efficient a means of detec-
ting statistically significant differences as compared with
parametric methods. A method is presented for optimally
allocating counts within and among S-R cells for getting
an estimator with the greatest precision in the least time .

Introduction

The use of Sedgwick-Rafter (S-R) cells for estimating the
standing crop of phytoplankton and in measuring algal
growth rates by counting cell divisions appears to be wide-
spread, and descriptions of the techniques involved have
been included in a number of methodological handbooks
and review papers (e .g ., APHA 1971, Guillard 1973, Lund
& Tailing 1957, Welch 1948) . According to the APHA

Dr. W. Junk b . v . Publishers - The Hague, The Netherlands

Hydrobiologia vol . 48, 2, pag. 95-107, 1976

(1971, page 734), the S-R cell offers the advantage of being
` . . .easily manipulated and provides reasonably repro-
ducible information . . .' ; it suffers, however, from the
limitation that the high magnifications needed for count-
ing nannoplankton and ultraplankton are difficult to
achieve with ordinary microscopes due to S-R cell design,
and other procedures (see Guillard 1973, Schwoerbel
1970) have been proposed for these purposes .
During preliminary work on the role of desmids

(Desmidiales, Chlorophyta) in Wisconsin lake com-
munities, it quickly became apparent that the directions
given in the methodological handbooks for S-R cell use
are not explicit in some respects and that information on
these points from other sources appears contradictory, or
confusing, or altogether absent . Among questions that
have arisen are the following :
1 . Should at least 15 minutes settling time be allowed

prior to counting (APHA 197,) or is 3-5 minutes
sufficient (Guillard 1973)?

z. Does the field counting technique yield results that are
better than, comparable to, or poorer than strip count-
ing data in terms of accuracy and efficiency?
If the field counting technique is employed, how many
S-R cells should be examined and how many fields
per cell should be counted? (The APHA (197,) states
that 10 or more random fields should be counted but
makes no mention of the number of S-R cells to be
examined; Welch (1948) recommends counting at
least 1o fields in each of 2 cells ; McAlice (1971) suggests
examining 30 fields in each of 3 cells ; Kutkuhn (1958)
proposes enumerating 10 fields in each of 4 cells, and
Guillard (1973, page 300) says : `Count enough fields to
get the precision desired .')

4. What is the most efficient way of obtaining S-R data
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given arbitrarily defined standards of accuracy or
arbitrarily set time limits for the examination of
individual samples? McAlice (1971) considers only
time but not accuracy in his cost analysis, and to our
knowledge, no one else has undertaken a complete
cost analysis .
Another problem concerns methods used to detect

statistically significant differences between two or more
samples. Those apparently few investigators (e.g., Ballen-
tine 1953, Gilbert 1942, Littleford et al. 1940) who have
employed statistical evaluations have used parametric
procedures on the assumption that the distribution of the
data is approximately normal . Kutkuhn (1958), McAlice
(1971), and Serfling (1949), however, have demonstrated
that this assumption cannot always be made . Further-
more, transforming data to approximate a normal
distribution apparently is not always possible (Kutkuhn
1958, page 73) . In view of these facts, the question arises
as to whether nonparametric procedures, which are less
distribution-dependent, offer a satisfactory alternative to
parametric procedures for detecting statistically signifi-
cant differences .

The present study has been undertaken i) to gather
information which hopefully will help to answer the four
questions raised above concerning S-R cell use and 2) to
discuss the use of parametric and nonparametric proce-
dures in testing S-R cell data for statistical significance .

II . Materials and Methods

The experimental population employed in this investiga-
tion has been prepared by mixing aliquots of three uni-
cellular desmids (Micrasterias laticeps Nordstedt,
Netrium digit at us (Ehrenberg) Itzigsohn and Rothe,
Staurastrum leptacanthum Nordstedt), one filamentous
desmid (Sphaerozosma sp .), and one colonial chloro-
coccalean alga (Scenedesmus quadricauda (Turpin)
Breb.) and then preserving the mixture with Lugol's solu-
tion (H 20-iooo ml. ; 12-1o gm.; KI-5 gm.) or with FAA
(10 :7 :2 :1 : :95% ethanol : distilled water : formalin : acetic
acid) . All taxa represent clonal isolates from Wisconsin
lakes .

Using pipettes with a bore diameter of 1 mm., aliquots
of the test population were extracted from the preserved
sample (which was constantly being mixed with a mag-
netic stirrer) and were pipetted into S-R cells according to
directions given in APHA (1971) . Once the algae had sett-
led, data were obtained at i oox total magnification by the
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field counting method using a Whipple micrometer
(APHA op . cit.) . Five randomly selected (see Guillard
1973, page 300) Whipple grid areas were tallied in each of
too different S-R cells for a total of 500 counts. Each count
included the total population and the numbers of individ-
ual plants (a filament or colony is one plant) of each of the
five component taxa. Organisms touching or crossing the
upper and the right hand boundaries of the Whipple grid
were included in the tallies while those touching or cross-
ing the lower or left hand boundaries were excluded from
the tallies .

In this study, the time required to prepare a S-R cell for
counting (excluding settling time ; see discussion below)

Table i . List of mathematical symbols .

Symbol

	

Definition

A Estimated component of variance due to differences

among S-R cells

CV

	

Coefficient of variation

k

	

Number of available S-R cells

M

	

Settling time for a S-R cell

m

	

Number of fields counted per S-R cell

m* Integer just smaller than the calculated value of m

m* + 1 Integer just larger than the calculated value of m

n

	

Number of S-R cells studied

x
a-

z

za A

2aW

p Half-width of confidence interval, expressed as

fraction of mean

s

	

Time required for preparing, filling and cleaning

a S-R cell

s f Time required for filling a S-R cell

T

	

Total time spent for a S-R cell analysis of a population

t

	

Time required for making a single Whipple grid tally

t .
05,n

	

Student's t at 5% significance level with n-I degrees

of freedom

V

	

Estimated variance of mean

W

	

Estimated component of variance due to differences

among counts within S-R cells

Mean of nm measurements

True variance of mean

True component of variance due to differences among

S-R cells

True component of variance due to differences among

counts within S-R cells



averaged i min; the time required to clean an S-R cell after
use (see Guillard 1973, page 297 for cleaning instructions)
averaged 2 min; and the time required to examine one
Whipple grid area also averaged 2 min. Since similar
times were required in counting raw plankton samples
from Wisconsin lakes (unpublished data), the above
times have been employed in making efficiency deter-
minations .

The coefficient of variation (CV) of the mean has been
employed as a statistical measure of the accuracy and
reproducibility of a given counting regime . A low CV
means greater accuracy and reproducibility than a high
CV. A detailed summary of mathematical formulae and
calculations appears in Appendix I at the end of the paper
and a complete list of mathematical symbols appears in
Table i .

III. Procedural Results

A . Settling Time & Counting Technique
Settling time appears to depend upon the type of fixative
used and upon the type of algae present . The iodine in
Lugol's solution apparently facilitates settling (Guillard
1973), probably because of its high atomic weight and by
speeding gas release from cells, whereas FAA does not
appear to offer such advantages . In tests conducted on the
experimental population and on some raw plankton
samples from Wisconsin lakes, plants preserved with
Lugol's solution required a maximum settling time of 7
min. while FAA preserved material required a maximum
settling time of 1o min. Waiting for 15 min as recom-
mended by APHA (1971) appears unnecessary in the
samples tested . Observations made during these experi-
ments suggest that taxa with large surface to volume
ratios (e .g ., certain species of Staurastrum) or taxa with
gas vacuoles (e .g ., certain Cyanophyta) settled more slow-
ly than most other taxa .

Superficially, the strip counting technique would appear
to offer more reliable results than the field counting tech-
nique since a much greater area of the S-R cell is counted .
Closer investigation, however, reveals that the field count-
ing technique is not only far less time consuming but is
also more reliable (i .e ., it results in a smaller coefficient of
variation) .

Consider the nature of a strip count involving the use of
a Whipple grid whose width is 0 .7 mm. at ioox magnifica-
tion (this equals the grid width for the microscope
employed in this study) . Since the length of an S-R cell is

50 mm., each strip contains 71 .4 Whipple grid areas, and
if one follows APHA recommendations, 2-4 strips or
142.8-285 .6 Whipple grid areas would be counted . Assum-
ing 2 minutes are required to count each Whipple grid
area, the counting of two strips would take 286 minutes (4
hours, 46 minutes) and the counting of four strips would
take 571 minutes (9 hours, 31 minutes) . In contrast, afield
counting technique involving two .Whipple grid tallies on
each of 12 different S-R cells takes only 84 minutes (1
hour, 24 minutes), including the time necessary to prepare
(1 minute) and clean (2 minutes) each slide . Moreover, the
coefficient of variation (CV) for the above field counting
regime on the experimental population examined during
this study was 5.83%, while the comparable CV for the
strip counting method was 13.33% for a 2 strip count and
13.27% for a 4 strip count (see Table 2) .

Thus, the 2/ 12 field counting method requires less than
a third (0 .29) the time and gives a CV less than one half
(0.43) as large as the two-strip counting technique . There-
fore, the former appears to be by far the preferred method .

Table 2 . Coefficients of variation (CV) of the mean of the experi-
mental population for various combinations of n and m .

12

	

2

	

24

	

5.8

1s

	

1

	

1s

	

6.5

15

	

2

	

30

	

S.2

15

	

3

	

45

	

4.7

20 20 5 .7

24

	

1

	

24

	

5.2
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n m nm CV Cents

1 10 10 14 .9

1 24 24 13 .9

1 71 .4 71 .4 13 .5

1 142 .8 142 .8 13 .3

1 285 .6 285 .6 13 .3

2 10 20 10 .5 Recommended by Welch (1948)

2 12 24 10 .3

3 30 90 8 .0 Recommended by McAlice

(1971)

4 6 24 7 .9

4 10 40 7 .4 Recommended by Kutkuhn (1958)

s 5 25 7 .3

6 24 7 .0

8 3 24 6 .4

10 2 20 6 .4

10 3 30 S .8



B. The Counting Regime

Since, as indicated above, recommendations for S-R cell
counting regimes vary considerably in the existing litera-
ture, studies have been undertaken to develop a general
procedure for deciding upon a particular counting regime
and to determine which, if any, of the recommended
schemes is to be preferred based on a comparison of
coefficients of variation of the mean .

A S-R counting regime has two components : n, the
number of slides studied, and m, the number fields per
slide counted . To determine the coefficient of variation for
a given combination of n and m, it is necessary to estimate
the variance of the mean, V, which is given by the expres-
sion

(I)

	

V=A/n+W/nm
where A is that component of the variance due solely to
differences in algal densities among the various S-R cells
and W is that component of the variance due solely to
differences in the counts within a given S-R cell (Cochran
1953, chapter to; see appendix I for further details on A
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Table 3. Cost analyses giving optimum n and m with time or precision limiting and with
t = 2 minutes (A = 8 .o6, W = 21 .6, 1= 2I .5, s = 3, and M = io) .

T CV

and W). Once V has been determined, the coefficient of
variation can be calculated from the formula

(2)

	

CV =1oo'VV/ i
where x is the mean of the nm measurements .

Using A = 8 .o6, W = 21 .6, and x = 21 .5 (calculated for
the experimental population with n = too and m = 5 as
described under `Materials and Methods'), the CV values
for different combinations of n and m have been calcu-
lated and are summarized in Table 2 . The results strongly
indicate that, in general, making fewer counts on each of
a greater number of S-R cells gives more accurate results
(based on CV values) than making a large number of
counts on one or several S-R cells . Consider, for example,
making a total of 24 counts . The CV value for 24 counts
on one S-R cell is 13 .9, for 6 counts on 4 cells, CV = 7 .9 ;
and for 2 counts on 12 cells, 5 .8 . The analysis also indicates
that the regimes recommended by Kutkuhn (1958),
McAlice (1971), and Welch (1948) provide less reliable
data than does a regime involving 2 counts on each of 12
S-R cells . Moreover, the Kutkuhn and McAlice schemes
involve total counts of 4o and 9o respectively, and this

P m

	

n

T, is limiting, it is made as close to 60 minutes as possible with

balanced sampling . Precision is measured by the quantity p, where

the 95% confidence limits are x ± px . If precision, p, is limiting,

it is made as close to .10 as possible .

(k - 1)s > M or k > 5

k =

k =

2

1

63

126

59

158

63

294

6 .7

4 .8

7 .6

4 .6

9 .9

4 .6

.16

.10

.21

.10

.42

.10

2

2

4

4

4

4

9

18

5

14

3

14

a The limiting value, time or precision, is underlined . If time,



means that they require much more time to gather data
than does a 2/ 12 regime .

McAlice (1971) got m = 25 from Table 3 of Brooks
(1955) and increased this to m = 30 to insure detection of
less frequently occurring species . The increasing rn from 25
to 30 is of questionable value not only because of the diffi-
culties involved in getting reliable data at the species level
(see Kutkuhn 1958) but also because McAlice (1971) himself
recommends the technique only for taxon populations

_>Io5 cells/ 1 . Moreover, the detection of taxa depends on
the total number of fields examined (i .e . nm), not just on
m, and increasing n will, therefore, have the same effect
as increasing m with the added advantage of increasing
precision. The use of Table 3 of Brooks (, 955) is discussed
below in connection with part C, efficiency .

A and W, and, hence, CV will vary for different samples

and different techniques . However, greater variability in
algal density among the S-R cells (or relatively larger A)
will only increase the advantage of studying more slides .
On the other hand, less variability in algal density among
the S-R cells (or relatively smaller A) would favor using

T CV

fewer slides . But the experimental population was well
mixed, making unlikely, for all practical purposes, the
drastic reduction in A that would be necessary to favor
studying only 2 to 4 S-R cells, as recommended in the

literature .

C. Efficiency

The cost of estimating algal density with S-R cells in terms
of time and accuracy depends not only upon the values of
A and W but also upon the following factors :
1 . The desired precision of the mean (e .g., the value of

CV) ;
2. The time required for preparing and cleaning of S-R

cells (denoted by `s') ;
The time required for making an individual Whipple

grid tally (denoted by `t') ;
The time available for making the total number of
counts (denoted by "r ; T = ns + nmt) ; and

5. The settling time (denoted by `M') .
Based on results of work on the experimental population

3 .

4 .

Table 4 . Cost analyses giving optimum n and m with time or precision limiting and with
t = i minute (A = 8 .o6, W = 21 .6, x = 21 .3, s = 3, and M = to) .

P m

	

n

T, is limiting, it is made as close to 60 minutes as possible with

balanced sampling . Precision is measured by the quantity p,

where the 95% confidence limits are x ± px. If precision, p,

is limiting, it is made as close to .10 as possible .

9 9

(k - 1)s > M or k > 5

k =

k =

2

1

60

90

64

124

57

228

S .7

4 .7

6 .3

4 .5

9 .2

4 .6

.13

.10

.16

.10

.39

.10

3

3

7

7

6

6

10

15

6

12

3

12

a The limiting value, time or precision, is underlined . If time,



as well as on some raw plankton samples from Wisconsin
lakes, values of s = 3 minutes (i .e., i minute for filling and
2 minutes for cleaning), t = 2 minutes, and M = io min-
utes appear to be reasonable estimates . Moreover, if
k > i + M/ sf where k is the number of S-R cells available
and s f is the filling time, the settling time can be ignored
(see Appendix I for further details and for cases where M
cannot be ignored .) .

Knowing the values for s, t, A, and W, and assuming M
can be ignored, the optimum value of m can be deter-
mined from the equation

(3) m= V'Ws/At
Commonly the integer value of m will equal one . How-

ever, A and W, and hence m, will vary with different tech-
niques of S-R cell preparation and with samples of differ-
ing composition as shown in Appendix I . It is important,
therefore, to get data that allow estimating both A and W
to see if the optimum m changes substantially. Conse-
quently one should consider making m = 2 even when
formal analysis gives m = i so as to allow some measure
of variation within slides .

McAlice (1971) selected an initial m of 25 by consulting
Table 3 of Brooks (1955) . This implies that McAlice used
only one S-R cell (k = 1) and thus could not use his 15 min
settling time productively . Our results indicate that set-
tling time can be ignored (and thus efficiency increased)
if k t + M/ s f as shown above . McAlice implies he had
a W / A ratio between 10 .5 and 184 .2 . For our experimental
population W / A = 2.7, and (based on our values for M, s,
and t), Table 3 of Brooks (1955) gives a range for m of , to
4; and this is consistent with our results and recommen-
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dations. Thus, the difference between McAlice's recom-
mendation of m = 3o and our recommendation of m =
2 or 3 stems from our assuming more than i S-R cell is
available and from our having greater variability among
S-R cells . Our Table 7 allows for choosing the optimum
m for any number of S-R cells and for a range of W / A
ratios .

The value of n, unlike m, is dependent upon both CV
and T, and hence one cannot arbitrarily set limits on both
precision (CV) and time (T) . If time is the more important
and, therefore, limiting factor, the optimum value of n for
a specified T is given by the equation

(4)

	

n = T/ (s + mt)
whereas if precision is the more important and, therefore,
limiting factor, the optimum n is given by the equation

(5)

	

n=(A+W/m)/V
where V = (x .CV/ 100)2 for a specified value of CV . An
alternative way of determining n where precision is de-
fined in terms of confidence intervals rather than CV is
presented in Appendix I . Tables 3 and 4 summarize
results of cost analyses for the experimental population
given different restrictions of time and precision .

IV. Parametric vs. Nonparametric Tests

The choice of parametric or nonparametric procedures in
testing for statistically significant differences depends
both upon the nature of the data and upon the relative
advantages and limitations of the two approaches . As a
basis for discussion, consider the data in Table 5, which

Table 5. Summary of S-R cell data for five samples from the experimental population using a m = 2, n = 12 counting
regime . Samples t to 3 were taken from the original population ; samples 4 and 5 were taken from the original popula-

tion after dilution and concentration, respectively .

Sample and organism 1 2
Sums of two counts on each Sedgwick-Rafter cell

10 11 123 4 5 6 7 8 9

Sample 1

Micrasterias 3 3 3 3 0 4 0 2 1 3 5 0

Netrium 1 2 1 1 1 1 1 4 1 2 2 0

Scenedesmus 22 37 17 23 13 21 32 27 22 21 26 17

Sphaerozosma 2 4 5 5 2 2 0 2 3 4 4 2

Staurastrum 8 9 7 16 10 13 15 11 6 12 12 11

TOTAL 36 55 33 52 26 41 48 46 33 42 49 30



Table 5 continued

was generated from the experimental population by

	

among the population densities of the samples for the
means of a m = 2, n = 12 counting regime, and assume

	

total population and for each organism .
one wishes to know whether significant differences occur

	

Because parametric procedures are applicable only to

IOI

Sample 2

Micrasterias 3 2 4 3 5 2 3 4 1 4 4

Netrium 0 0 0 0 1 0 2 2 2 1 0 1

Scenedesmus 16 29 26 22 24 28 26 21 29 42 32 18

Sphaerozosma 3 1 2 2 1 1 3 1 2 2 6 2

Staurastrum 19 9 6 17 12 16 15 8 8 19 16 13

TOTAL 41 41 38 44 43 47 49 36 42 68 S8 38

Sample 3

Micrasterias 1 1 5 2 1 4 12 1 2 2 2 2

Netrium 2 0 1 0 0 1 1 1 2 0 0 0

Scenedesmus 34 22 31 27 29 27 18 23 29 26 15 17

Sphaerozosma 5 2 2 3 7 5 1 5 7 1 4 3

Staurastrum 9 9 13 14 16 9 8 11 13 13 13 9

TOTAL 48 34 52 46 53 46 30 41 S3 42 34 31

Sample 4

Micrasterias 1 1 0 1 2 1 1 3 0 2 2 2

Netrium 0 0 0 0 0 0 1 0 2 1 0 0

Scenedesmus 3 5 10 9 10 7 9 13 10 12 11 11

Sphaerozosma 1 2 1 2 1 0 2 3 2 0 1 0

Staurastrum 2 11 7 2 3 5 4 5 4 2 3 5

TOTAL 7 19 18 14 16 13 17 24 18 17 17 18

Sample 5

Micrasterias 5 2 8 6 1 5 2 2 1 1 5 3

Netrium 0 3 1 1 1 0 0 1 1 1 1 1

Scenedesmus 35 26 21 25 23 30 29 22 21 34 32 32

Sphaerozosma 7 7 6 7 6 5 4 3 3 3 3

Staurastrum 7 19 18 20 13 17 13 14 9 9 14 13

TOTAL 54 57 54 59 44 57 48 42 34 48 55 52



approximately normally distributed data, and because ducted to determine if the data are normally distributed .
such data cannot always be assumed for S-R cell work For cases where the test indicates non-normal distribution,
(Kutkuhn 1958, McAlice 1971, Serfling 1949), tests such as efforts can be made to transform the data to an approx-
the Lilliefors test (Conover 1971, p . 302)must first be con-

	

imately normal distribution (see Kutkuhn 1958, McAlice

Table 6 . Results of parametric and nonparametric analyses of data in Table 5 .

Micrasterias logarithm (x + 2)

Netrium logarithm (x + .1)

Scenedesmus logarithm (x + .1)

Sphaerozosma logarithm (x + 1)

Staurastrum

	

logarithm (x + .1)

TOTAL

	

logarithm (x + .1)

a

b

102

Probabilities associated

Lilliefors test	 with test statistics	

True status of null hypoth-

Statistical

	

esis that no differences exist

Organism

	

Best transformation a

	

Probability

	

testb

>>.20

	

Parametric

Nonparametric

>.20

	

Parametric

Nonparametric

>>.20

	

Parametric

Nonparametric

> .20

	

Parametric

Nonparametric

>> .20

	

Parametric

Nonparametric

Parametric

Nonparametric

>> . 20

Lilliefors tests were made on 36 observations from a single population (samples 1, 2, and 3 of Table 5)

using the original data and the following transformations : Ii, ,7x + .5, x-+I, ln(x + .1), ln(x + .5),

ln(x + 1), ln(x + 2) . Under "Best transformation" is the transformation giving the closest approximation

to a normal distribution .

The parametric test is the one-way analysis of variance with data transformed using the transformation

listed under "Best transformation ." The nonparametric test is the Kruskal-Wallis test, with the probability

associated with the test statistic (corrected for ties) estimated using a chi-square approximation .

C Analysis based on samples 1-3 in Table 5, all of which represent aliquots of the same population .

d Analysis based on samples 3-5 in Table 5, each of which represents a different population .

Truec Falsed

.093 .011

.071 .036

.052 .069

.11 .11

.52 5 .6 .10 -ii

.48 6 .7 .10 -6

.14 .000016

.099 .00019

.41 4 .2 . 10
-9

.35
wa

1 .7 .10 -5

.43 9 .5 . 10 -4

.67 2 .3 .10
-6



1971), but such transformations are not always possible
(e .g ., Kutkuhn 1958, page 73), especially in cases where the
means approach zero . For the samples in Table 5, trans-
formations appear to be possible in all cases, once the
proper transformation functions have been determined
(see Table 6) .

Nonparametric procedures, in contrast, are less
distribution-dependent . As a result they offer two distinct
advantages : i) they can be used for a wider range of data,
and 2) they can be applied directly without any prelim-
inary testing or transforming . Furthermore, the nature of
the data may be such that nonparametric tests are the only
ones which can be applied .

Where the data are approximately normally distrib-
uted or can be transformed, the choice between non-
parametric or parametric tests for S-R cell analysis also
involves a consideration of the asymptotic relative effi-
ciency (A.R.E .) of particular nonparametric tests with
their parametric counterparts. If only two samples are
involved, one can test for statistically significant differ-

•

	

(precision,

defined by confidence

interval, limiting)

ences by using either the parametric t-test or the non-
parametric Mann-Whitney test (or the Wilcoxon rank
sum test) . If more than two samples are involved, one can
test for statistically significant differences by using either
the parametric F test or the nonparametric Kruskal-
Wallis test . In both cases, the A .R.E. of the nonparametric
test relative to the parametric test for normally distributed
data is 0.955 (Conover 1971, pages 235 and 262). Roughly
this means that if a parametric test of a given power and
level of significance requires 96 observations on each pop-
ulation, the nonparametric test of the same power and
level of significance would require too observations on
each population . Thus, nonparametric tests are almost as
powerful as their parametric counterparts .

Analyzing the same data (Table 5) parametrically and
nonparametrically illustrates the above point (see Table
6). As shown there, results of nonparametric tests agree
with those of parametric tests in all cases in showing or not
showing significance at the 5% and i% levels. When the
null hypothesis that no differences exist among samples

Table 7 . Summary of equations to be used in cost analyses for various conditions of k .

quantities As/At

or [M/(k - 1) -s]/t

•

	

(time limiting) T/(s + M + mt) [T - M + 2(k - 1)s]/(s + mt) T/(s + mt)

•

	

(precision, (A + W/m)/V (A + W/m)/V (A + W/m)/V

defined by CV,

limiting)

t20S,n-1 (A + W/m)/(PX)2 t205,n-1 (A + W/m)/(PX) 2 t205,n-1 (A + W/m)/(Px) 2

10 3

Equation

for k = 1

k > 1 but

(k - 1)s < M (k - 1)s > M

T = n(s + M) + nmt M - 2(k - 1)s + ns + nmt ns + nmt

V = A/n + W/nm A/n + W/nm A/n + W/nm

m = VW(s + M)/At The larger of the VWs/At



is true (i .e ., among samples 1-3 in Table 5), the probabili-
ties from the nonparametric and the parametric tests are
similar and indicate no significant differences . When the
null hypothesis that no differences exist among samples
is not true (i .e ., among samples 3-5 in Table 5), the proba-
bilities from the nonparametric tests are all larger than
those from the parametric tests. Thus, the nonparametric
test is more conservative . However, for probabilities in the
range .o5- .0i (e .g ., for Micrasterias and Netrium in Table
6) the tests give equivalent results . The only dramatic
differences occur for probabilities much less than ooi
(e .g., for Scenedesmus and Staurastrum in Table 6), but
since both tests give overwhelming evidence of real differ-
ences among the samples, the differences in probabilities
are of no practical importance.

Assuming normally distributed data, two conclusions
can be drawn from the above: 1) nonparametric tests are
nearly as effective as parametric tests in detecting signif-
icant differences; and 2) nonparametric tests are slightly
more conservative than parametric tests ; i .e ., any signif-
icant difference detected by a nonparametric test will also
probably be detected by the parametric counterpart,
whereas in a few borderline cases only the parametric test
will show significant differences .

In view of the facts that nonparametric procedures can
be applied in all situations without testing for the presence
of approximately normal distributions and without
attempting to make transformations, and because they
are nearly as efficient as their parametric counterparts
(indeed, they can be even more efficient where the data is
not normally distributed ; see Conover 1971), non-
parametric tests generally appear to be more satisfactory
than parametric tests for analyzing Sedgwick-Rafter cell
counts .
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Appendix I

This appendix presents details for the derivation of the
formulae used in the main body of the paper . In addition,
it provides a method for determining which integer to use
when the calculated m is not a whole number, and it indi-
cates how a cost analysis can be performed when the num-
ber of Sedgwick-Rafter cells, k, is limited . The mathe-
matical symbols used are summarized in Table i . The
material presented, though independently derived, is an
extension of that in Cochran (1953, chapter io) .

A . Derivation of Formulae

Let n be the number of slides studied, m, the number of



counts made on each slide, and xii, countj on slide i, where
j = I, . . ., m, and i = I, . . ., n. One can use the mean of all
the counts,

n m
x = E

	

E xil/nm,
1 = I j = I

to estimate the density of algae if the volume represented
is known. The variance of the mean is a measure of the
precision of the estimator . The smaller the variance, the
better the estimator . The variance of the mean is

(I)

	

a- = aA/n + a W/nm

where aA is that component of the variance due solely to

differences among densities on different slides and aW is

that component of the variance due solely to differences
among counts within a given slide (Cochran, 1953) . Using
a preliminary set of data (xii ; i = i, . . ., n ; j = I, . . ., m), one
can estimate the components of variance with statistics
from an analysis of variance testing for differences among
the slides :

(2)

	

W = aW = MSW

(3)

	

A = aA = (MSA- MSw)/m

where

n m
(4)

	

MSW = E

	

E (xii - xi)2/(nm - n)
i= I j= I

n
with (5)

	

= E xii/m
j= I

and

n
(6)

	

MSA = E (xi - x) 2/(n - i)
i=I

are mean squares measuring variation within and among

slides respectively (Sokal and Rohlf, 1969) . Using the
estimator of variance components one can estimate the
variance of the mean by

(7)

	

V=A/n+ W/nm

The coefficient of variation can then be determined from

(8)

	

CV= Too VV/x

If the total number of counts to be made, nm, is fixed and
the relative costs of making a slide and of making a count
on a slide are ignored, the variance of x is minimized by
making n as large as possible or, equivalently, making m
as small as possible, i .e ., m = i . Setting m = i, however,
will not always give the most precise estimator of algal
density if time is limited .

To determine the best choice of n and m the cost, in
time, of collecting the data must be considered . Let T be
the total time spent studying a sample ; then

(9)

	

T = ns + nmt

where s is the time needed to make a slide and t is the time
required to make a count on a slide . In practice, slides need
a minimum settling time, M, before counting can begin .
Thus, after the first slide is made one must wait at least M
units of time before starting to count . If this time can be
used to make additional slides (i .e ., if (n- I)s>-M), M can
be ignored in the cost equation, and this has been done in
equation 9 .

If one assumes (n- I)s,>M, then the optimum choice of
m and n is such as to minimize V (equation 7) and T
(equation 9) simultaneously. To obtain the desired mini-
mization, equation 7 indicates that m and n should be
made larger and equation 9 indicates the reverse . Also, if
the total number of counts, nm, is fixed, equation 7 indi-
cates that n should be increased and equation 9 indicates
the opposite . Clearly a compromise is necessary .

If the total time for analysing a sample is fixed, T is con-
stant, and using equation 9, n can be expressed as a func-
tion of m, namely n = T / (s + mt) . Substituting this ex-
pression for n in equation 7 gives

(io)

	

V = [A(s + mt) + W(s + mt) / m]T .

To get the value of m which minimizes the estimated
variance of the mean, V, the derivative of V with respect
to m is set equal to zero, and the equation is solved for m :
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(I I)

	

dV/dm=(At-Wsm-2)/T=o

and

(12)

	

m= \/Ws/At

Substituting expression 12 in d 2V/dm2 shows that the
positive root of Ws/At minimizes V .

Thus, the best m is independent of both V and T and
depends only upon two ratios, namely the within to
among slide variation and the time needed for making a
slide to the time needed for making a count . Equation 12
is intuitively reasonable, since the number of counts per
slide, m, increases as either the variability within a slide,
W, or the cost of making a new slide, s, increases .

Once m is known, the value of n can be determined by
solving equation 9 for n if a given time, T, is specified, i .e .,

(13)

	

n = T/ (s + mt)

or by solving equation 7 for n if a given degree of precision,
V, is specified, i .e .,

n=(A+ W/m)/V .

An alternative way of having precision determine n is to
use confidence intervals rather than coefficients of varia-
tion. The number of slides, n, must be such as to give 95%
confidence limits on the mean approximately equal to
x ± px, where p is an arbitrary number, e.g ., p = . 1 . If
the data are approximately normally distributed, the 95%
confidence limits are x ±t,0$, n-1 sx, where t .05, n-I is
Student's t at the 5% significance level with n-1 degrees of
freedom and sx is the standard deviation of the mean
(Sokal and Rohlf, 1969) . Estimating sx by VV gives

p x = t .o5, n-1 1'V

V = p2 x 2 /t 2.05, n-1

or

io6

Substituting expression 16 in equation 7 and solving for n
gives

(17)

	

n = t2.05, n-I (A + W/m)/(p2 X2) .

Substituting values of Student's associated with different
values of n until the right-hand expression of equation 17

approximately equals the n of Student's t gives the re-
quired n .

B. The Integer Value of `m'

Since practical considerations dictate that the same num-
ber of counts, m, be made on each Sedgwick-Rafter cell,
it will be necessary to convert the calculated value of m
(equation 12) to either the integer just smaller, m*, than
or just larger, m* + 1, than m itself. The choice of m* or
m* + i depends on which minimizes the estimated vari-
ance of the mean, V. Let V p and V, be the variances ob-
tained by substituting m* and m* + i respectively into
equation Io. If V0<V, the integer m* is preferred, whereas
if V0 >V, the integer m* + i is preferred . These relations are
equivalent to choosing m* if m* (m* + i) is greater than
Ws/At and m* + i otherwise .

C. Cost Analysis for a Limiting `k'

In cases where the number of available Sedgwick-Rafter
cells, k, islimited such that (k- i)s<M, the settling time, M,
cannot be used fully to make new slides . Therefore, M
must be taken into consideration in computing the cost in
time of analyzing a sample, and equation 9 must be
modified accordingly . If only one S-R cell is available
(k = 1), the settling time can be included in the cost of
making a slide, and equation 9 becomes

(18)

	

T=n(s+M)+nmt

and the cost analysis is as in part A of the appendix with
s + M substituted for s .

If k>, but (k- i)s<M, equation 9 becomes

(19)

	

T = s + M -(k- i)s + k(mt + s)- ks
+(n/k- i)[Positive (M-(k- I)(mt + s)) + k(mt +s)]

where the function `Positive' takes on the value zero or
[M-(k-i) (mt + s)] if the latter expression is negative
or positive, respectively. The function Positive [(M-(k- I)
(mt +s)] represents time wasted to allow for settling in the
interval between the end of counting and refilling one
batch of k slides and the start of counting and refilling the
next batch. Optimization requires that this time either be
eliminated or put to use .

Since the time cannot be eliminated because the slides
must settle, and since the time cannot be used to make
additional slides because k is limited, the only alternative



is to spend the time making more counts on each of the
available slides . Therefore, m must be made large enough
to make the function Positive [M-(k- i)(mt + s)] zero,
that is

(20)

	

M-(k- i)(mt + s) < o

or

(2I)

	

m>[M/(k-i)-s]/t .

Hence, one need only consider the simpler version of the
cost function represented by equation i9 where Positive
[M-(k- i)(mt + s)] is zero :

(22)

	

T + M-2(k- i)s + ns + nmt

Equation 22, however, is equivalent to equation 9 with T
replaced by T-M + 2(k- i)s . Therefore, the optimum m
is the same as before and can be computed from equation
12 with the restriction that m must also satisfy equation
21 .

A summary of the sequence of equations to be used for
various conditions of k appears in Table 7 .
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